
TRUSTWORTHY PROGRAM GENERATION IN THE KEY PHASES OF THE
SOFTWARE DEVELOPMENT LIFE CYCLE

by

CAI YUFAN
(B.S., Shanghai Jiao Tong University)

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

in the

GRADUATE DIVISION

of the

NATIONAL UNIVERSITY OF SINGAPORE

2024

Supervisor:
Professor Dong Jin Song

Examiners:
Associate Professor Chin Wei Ngan

Associate Professor Mohan Gurusamy

Declaration

I hereby declare that this thesis is my original work and it has

been written by me in its entirety. I have duly

acknowledged all the sources of information which have

been used in the thesis.

This thesis has also not been submitted for any

degree in any university previously.

Cai Yufan

30 July 2024

Acknowledgments

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Dr.

Dong Jin Song, for his invaluable guidance, insightful suggestions, and constant encour-

agement throughout my doctoral journey. His unwavering support has been instrumental

in helping me navigate numerous challenging research topics.

I am deeply thankful to my Thesis Advisory Committee members, Dr. Kan Min Yen

and Dr. Mohan Gurusamy, for their thoughtful feedback and constructive comments,

which have significantly shaped my research work.

I am profoundly grateful to Dr. Lin Yun for introducing me to the fascinating and

dynamic field of code generation. My sincere thanks also go to Dr. Hou Zhe, who inspired

my exploration of the domain of programming languages. I would like to extend special

appreciation to Dr. David Miguel Sanan Baena, Dr. Sun Jun, Dr. Gong Yeyun, Dr. Liu

Yang, and other collaborators for their invaluable contributions and joint efforts to enhance

my research.

I am especially thankful to my fellow student, Liu Chenyan, for our close collaboration

on code-related tasks. I am also deeply appreciative of the unwavering support and

friendship of my friends: Dr. Zhang Hangsheng, Dr. Zhang Yedi, Dr. Xu Ming, Dr. Qi

Binhang, Yang Xianglin, Zhang Yifan, Sun Changsheng, Lin Yuxi, Zuo Xinyue, and Liu

Zhaoyu, whose presence has enriched my Ph.D. experience.

I am immensely grateful for the financial support provided by the National University

of Singapore Graduate School for Integrative Sciences and Engineering Programme.

Additionally, the School of Computing generously supported my participation in several

international conferences, for which I am truly thankful. I am also honored to have

received the Research Achievement Award and the President’s Graduate Fellowship,

which have been significant recognitions of my efforts.

Finally, I would like to extend my deepest gratitude to my family for their boundless

love and unwavering support throughout these years. Their encouragement has been my

greatest source of strength and inspiration.

i

Contents

Acknowledgments i

Abstract vi

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation and Goals . 2

1.2 Summary of Contributions . 5

1.3 Thesis Outline and Overview . 7

1.4 Publications from the Thesis . 9

2 Background 10

2.1 Trustworthy Program Generation . 10

2.2 Program Refinement . 12

2.3 Program Verification . 14

2.4 Program Documentation . 15

2.5 Program Evolution . 18

2.6 Program Adaptation . 18

3 Program Refinement: From Specification to Program 20

3.1 Introduction . 20

3.2 Motivating Example . 23

3.2.1 Guide the LLM . 23

3.2.2 Failure Feedback . 25

3.2.3 Learning Strategies for Extending the Refinement Calculus 26

ii

3.3 The Language . 27

3.3.1 The Specification Language . 28

3.3.2 The Program Language . 28

3.4 The Refinement Calculus . 30

3.4.1 Basics . 30

3.4.2 Core Refinement Laws . 31

3.4.3 Law Learning Strategy . 34

3.5 Interaction with LLM and ATPs . 40

3.5.1 Overview . 40

3.5.2 Complex Formal Specification 42

3.5.3 Interaction with LLMs . 43

3.5.4 Interaction with ATPs . 44

3.6 Evaluation . 45

3.6.1 Research Questions . 45

3.6.2 Baselines . 46

3.6.3 Benchmarks . 46

3.6.4 Implementation . 47

3.6.5 Experiment Results . 47

3.7 Case Study . 50

3.7.1 Square Root Algorithm . 50

3.7.2 Sorting Algorithm . 51

3.7.3 Prime Factorization Algorithm 53

3.8 Threats to Validity . 54

4 Program Documentation 56

4.1 Introduction . 56

4.2 Overview . 61

4.2.1 Motivating Example . 61

4.2.2 Our Solution . 64

4.3 Approach . 65

4.3.1 Embedding-based Representation 65

4.3.2 Code Knowledge Graph . 67

4.3.3 Context Sampling . 69

iii

4.3.4 Context Evaluation . 71

4.3.5 Context Fusion . 72

4.4 Experiment . 74

4.4.1 Experiment Setup . 75

4.4.2 Experiment Results . 77

5 Program Evolution 82

5.1 Introduction . 82

5.2 Overview . 87

5.3 Approach . 89

5.3.1 Subsequent Edit Analysis . 90

5.3.2 Prior Edit Analysis . 94

5.3.3 Edit Generation . 95

5.3.4 Model Training . 97

5.4 Tool Design . 97

5.5 Experiment . 98

5.5.1 Research Questions . 98

5.5.2 Benchmark Construction . 99

5.5.3 Experiment Setup . 100

5.5.4 Experiment Results . 102

5.6 User Study . 105

5.7 Threats to Validity . 108

6 Program Adaptation 109

6.1 Introduction . 109

6.2 Overview . 112

6.3 Problem Formulation . 114

6.4 Approach . 115

6.4.1 Influence Construction . 116

6.4.2 Estimated Influence . 117

6.4.3 Training Contribution Construction 118

6.4.4 On-the-fly Model Adaptation . 121

6.5 Evaluation . 123

iv

6.5.1 Experiment Setup . 123

6.5.2 Datasets . 124

6.5.3 Experiment Design . 126

6.5.4 Experiment Results . 127

6.6 Case Study . 131

6.6.1 Abstract versus Detailed Explanation 132

6.6.2 Explicit and Implicit Mistakes 133

6.7 Threats to Validity . 134

7 Conclusion and Future Work 137

7.1 Summary of the Thesis . 137

7.2 On-going and Future Works . 139

7.2.1 Tool Development . 139

7.2.2 Program Generation Techniques 139

7.2.3 LLM Agents . 141

Bibliography 142

v

Abstract

Trustworthy Program Generation in the Key Phases of the Software Development Life
Cycle

by

Cai Yufan

Doctor of Philosophy in Computer Science

National University of Singapore

The advent of large language models (LLMs) has transformed software engineering by

enabling the automatic generation of code from natural language specifications. Despite

their remarkable capabilities, LLMs lack reliability guarantees and often produce code

that may contain errors. This issue is exacerbated by their inherent tendency to hallucinate,

introducing significant risks into the software development process. Furthermore, the

process by which LLMs transform specifications into code is largely opaque, functioning

as an uncontrolled black box. This lack of transparency hinders users’ comprehension and

trust of the generated outputs. Additionally, the absence of explainability in the generated

code makes it challenging for programmers to understand and debug.

To address these challenges, this thesis introduces innovative methodologies to enhance

trustworthiness in program generation across key phases of the software development life

cycle. In this context, "trustworthiness" is defined by three core attributes: verifiability,

explainability, and reliability. These attributes are essential for ensuring that the generated

programs are functional and dependable.

This thesis addresses the key phases of the software development life cycle, including

the software requirements, software design and verification, and software maintenance and

evolution. Each chapter is devoted to one or more of these phases, presenting pioneering

techniques that blend advancements in artificial intelligence and formal methods with

robust software engineering practices. By doing so, this thesis seeks to establish a

foundation for creating trustworthy systems that bridge the gap between automated code

generation and practical software development.

The following introduces four key contributions:

vi

Program Refinement. We build the LLM Aided Program Refinement (LLM4PR)

approach to transform formal specifications into verified and reliable code through program

refinement. It combines formal program refinement techniques with LLM-driven code

generation. We integrate the formal verification system with LLM and address the

reliability issues of the generated program.

Program Documentation. We propose the structure-centric and context-fusion code

summarization tool called CProSum to improve the code comprehension capabilities of

neural network models. By creating a contextual knowledge graph from existing codebases,

CProSum achieves a more explainable and accurate code summary. It substantially

enhances the quality of automated code comments and effectively narrows the divide

between complex code scenarios and their summaries.

Program Evolution. We explore code evolution through intelligent edit recommenda-

tions that interact with developers to evolve the code project. The proposed tool CoEdPilot

improves existing code by considering historical edits and contextual project information,

employing LLMs to predict and apply precise code modifications accurately and reliably

with the interaction of the users.

Program Adaptation. We introduce the adaptive model generation tool Adacom, a

dynamic system that adjusts code and comment generation models in real-time. Adacom

tailors its training dataset by focusing on the most beneficial data subsets, significantly

boosting the efficacy of code and comment generators and demonstrating the practicality

of model adaptation in various settings.

Above all, this thesis tackles the practical hurdles in program-related tasks. We

combine program refinement and verification methods, retrieval augmented generation

(RAG) methods, and real-time adaptation techniques to build a trustworthy, verifiable,

explainable, and reliable program generation system. The contributions of this thesis have

been published in several top conferences.

The experiment results show that our tools can generate a more trustworthy program

than the state-of-the-art models. Through these contributions, this thesis addresses some

practical challenges associated with automating code generation tasks and lays a robust

foundation for developing trustworthy automated tools that assist developers throughout

the software development life cycle.

vii

Key words: Trustworthy AI, Program Generation, Program Refinement, Program Ver-

ification, Program Documentation, Program Evolution, Real-time Adaptation, Language

Model, Neural Network, Machine Learning

viii

List of Figures

3.1 Wrong implementations of square root algorithm generated by GPT-4 and

Copilot. The upper two programs are wrong in the case N < 1 due to the

wrong upper bound initialization. The third code fails when the variable x

goes to the fixed point, while the last code fails in infinite loops. 21

3.2 The Success Version for Program Refinement on Square Root Algorithm . . . 24

3.3 A Failed Version for Program Refinement on Square Root Algorithm. 26

3.4 A Binary Search Version for Program Refinement on Square Root Algorithm. 26

3.5 This example illustrates the process of learning and extending a refinement law. 27

3.6 Given initial refinement laws and the associated refinement dataset, LLM4PR

derives new refinement laws with the learning algorithm to refactor the refine-

ment steps and reduce the depth of program refinement. 34

3.7 Illustration of the Refinement laws. 40

3.8 Overview of LLM4PR with the integration of LLMs and program refinement. 41

3.9 The specification tree and the program refinement library. 45

3.10 Program Refinement Code Example of the Square Root Algorithm 50

3.11 Bubble Sort and Quick Sort with Program Refinement. 51

3.12 Prime Factorization with Program Refinement. 53

4.1 The lexical contribution of different context types to the comment of a target

method. 57

4.2 An example extracted from the Spring-framework project. 62

4.3 An example shows how our knowledge graph structure-based approach out-

performs the traditional retrieval method. 63

4.4 An example for context-based comment generation, extracted from the Spring

framework. 64

4.5 The contextual embedding space before learning 66

ix

4.6 The contextual embedding space after learning 66

4.7 Schema for contextual knowledge graph. 68

4.8 The code knowledge graph example for Figure 4.4. 69

4.9 Model training architecture of CProSum. 70

4.10 A comment generator architecture. 72

5.1 The Code Editing Framework in [29] [75] [112]. 83

5.2 Illustration of Edit Propagation for the examples in Table 5.1 and Table 5.2. . 88

5.3 CoEdPilot includes prior edit retrieval, subsequent edit analysis, and edit

generation. 89

5.4 Illustration of the transformer-based model to learn the dependency of the

code edits. 92

5.5 Architecture of the Edit Location Prediction. 95

5.6 Architecture of Our Edit Generator. 96

5.7 We implemented CoEdPilot as a Visual Studio Code extension. 97

6.1 Adacom framework. 115

6.2 A simple illustration of BERT architectures. 120

6.3 We use trace similarity to estimate the contribution of training samples to the

test sample. 120

x

List of Tables

3.1 Specification Language Lspec Syntax . 29

3.2 Specification Language Lspec Semantics . 29

3.3 Program Language Lpl Syntax . 30

3.4 Language Lmix Syntax . 30

3.5 LLM4PR will generate the specifications and conditions for further verifica-

tion in ATP. 42

3.6 A comparison of LLM4PR and LLMs on the HumanEval and EvalPlus bench-

marks. 48

3.7 Our LLM4PR and baseline CorC comparison on several program refinement

problems. 49

3.8 A comparison of LLM4PR and its variant without the program refinement

library is performed on the EvalPlus benchmarks. 49

4.1 Meta-path schemas defined on the code knowledge graph 67

4.2 Overview of the chosen baselines . 75

4.3 Overall performance of different comment generators on the project-split

dataset. The last three LLMs are not fine tuned on the dataset due to high cost. 78

4.4 Overall performance of different selectors and evaluators on the dataset. . . . 78

4.5 Boosting Performance of CProSum’s comment evaluator with various com-

ment generators on project-split dataset . 79

4.6 The performance of comment generators on function-split dataset 80

4.7 Boosting Performance of CProSum’s comment evaluator with various com-

ment generators on function-split dataset . 80

4.8 Ablation study on the information loss of code knowledge graph 81

5.1 The illustration of code edits in the file src/testing/benchmark.go 85

xi

5.2 The illustration of code edits in the file src/testing/testing.go 86

5.3 Benchmark of CoEdPilot including 471 projects with five programming lan-

guages. 100

5.4 The accuracy of propagating-file & line location 103

5.5 The performance of edit generation . 104

5.6 The Relevance Score for the Edit Location & Generation of Prior Edits 104

5.7 CoEdPilot Enhance the Performance . 105

5.8 Runtime Estimation of CoEdPilot . 105

5.9 The overall performance in seconds of Experimental Group (EG) and Control

Group (CG). 107

6.1 Motivating Example: Compromise Problem in Neural Network Models with

Conflicting Training Effects on Test Predictions 112

6.2 We show the influence scores and the corresponding estimated training contri-

bution of the examples shown in Table 6.1. 114

6.3 The similarity matrix of two sequences of code representations. 122

6.4 The algorithm based on soft-match for the token-level representations. 122

6.5 The Statistics of the Experiment Datasets . 124

6.6 Boosting performance of Adacom: Cross-model Evaluation 128

6.7 Boosting Performance of Adacom: Cross-Dataset Evaluation 129

6.8 Performance Analysis: Retrieval Model vs. Semantic Embedding with Cosine

Similarity on CodeT5-Base Model . 129

6.9 Cross-Domain Generalizability of Adacom: Language, Programming Lan-

guage, and Project Evaluation . 130

6.10 Efficiency Comparison: BLEU-4 Score Enhancement for Run-Time Overhead

with Baselines . 131

6.11 Ablation Study on Adacom . 132

6.12 We compare our AdaCom with ChatGPT for code comment generation. . . . 132

6.13 The predictions of ChatGPT are more verbose compared to AdaCom’s and

the ground truth. 134

6.14 The ChatGPT gives incorrect predictions compared to AdaCom’s and the

ground truth. 135

6.15 Illustration of Potential Overfitting in Adacom 136

xii

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The phenomenon of hallucination in large language models (LLMs)—where these

models generate plausible yet incorrect responses—is a notoriously challenging issue.

This issue is particularly acute in program generation, as LLMs often introduce subtle,

hard-to-detect bugs. In this thesis, we address these challenges by developing a sophisti-

cated, trustworthy program generation system. Our approach integrates several advanced

techniques to enhance the reliability of the generated code in several key stages of the

software development life cycle.

Firstly, we utilize formal methods to formalize the user requirements, build the for-

mal specifications, and then refine them to the programs, ensuring they meet rigorous

correctness standards. Secondly, we incorporate retrieval-augmented generation (RAG)

methods, which leverage a knowledge graph to provide relevant information during the

code comment generation process, increasing the explainability for further software prod-

uct release and deployment. Additionally, we emphasize the role of user interaction,

allowing for adjustments based on the user’s feedback to evolve the software. Finally,

our system is designed to adapt dynamically during the test time for domain-specific

knowledge, increasing its explainability and reliability. Together, these methodologies

form a comprehensive framework for creating software that not only functions correctly

but also maintains a high level of trustworthiness with the users throughout the software

development life cycle.

1

CHAPTER 1. INTRODUCTION

1.1 Motivation and Goals
Recent advancements in neural networks and language models have significantly

improved the mathematics, reasoning, and programming capabilities of the deep learning

models, as detailed in comprehensive surveys and studies [235, 174]. Notable industrial

applications such as GPT-4 [155] and Copilot [70] have provided substantial assistance to

programmers, even achieving performances that surpass the 50th percentile in program-

ming competitions. Despite these successes, these models still face significant challenges,

particularly the issue of hallucination, where they generate plausible yet factually incorrect

information. User studies such as [196, 50] have highlighted that programmers struggle to

trust and debug code generated by LLMs due to the non-transparent and uncontrollable

nature of the generation processes. This lack of transparency is a major barrier to their

reliability. Moreover, it has been demonstrated that a significant portion of responses from

ChatGPT to programming queries are inaccurate, with over half containing errors [97].

Some mathematical analyses such as [212] have proven that hallucinations in LLMs are

an unavoidable phenomenon, underscoring the need for ongoing research to mitigate these

issues and enhance model reliability.

In response, this thesis presents a series of innovative methodologies designed to

enhance the trustworthiness of program generation through language models. The method-

ologies integrate the latest advancements in rigorous formal methods, software engineering

practices, and advanced artificial intelligence techniques to verify and explain the result

of the language models. This integration approach ensures the reliable creation and

modification of code throughout various essential stages of the software development life

cycle. By employing this comprehensive strategy, we mitigate the risks associated with

neural network outputs and establish a new benchmark for developing and maintaining

reliable, explainable, and verifiable software systems. Specifically, we address four critical

issues: (i) program refinement, (ii) program documentation, (iii) program evolution, and

(iv) program adaptation.

Program Refinement The refinement calculus [140, 11, 28, 180, 193] is one kind of

formal methods that stepwisely translate the formal specifications into programs. It entails

correctness-preserving transformations of formal abstract specifications into executable

programs guided by a calculus-based approach. However, this transformation, based

2

CHAPTER 1. INTRODUCTION

on program refinement calculus, is largely carried out manually, making it both time-

intensive and prone to errors. Therefore, integrating LLMs and a proof assistant into

the refinement process is a logical progression. The system further extends the goal

of developing tool support for refinement calculus that is accessible to people without

deep expertise in program refinement or theorem proving. Besides, many refinement

steps require handling sub-derivations on sub-components of the program [26]. This

segmented reasoning requires library-based reasoning, which can manage complexity by

encapsulating functionality within functional abstractions. Traditional verification tools

for program refinement are highly interactive and offer limited automation. This thesis

presents an automated tool for program refinement called LLM4PR that combines the

LLM with the formal program refinement methods to generate verified code step by step.

Program Documentation Program comprehension forms a critical aspect of software

engineering. With the advent of neural network-powered technologies, source code

summarization and documentation are increasingly aiding programmers in understanding

their code projects. Traditionally, general natural language translation tasks include

translating text from one language to another, assuming that the input contains sufficient

information to deduce the output. Similarly, the prevalent one-code-to-one-comment

approach treats code summarization as a translation problem, where the deep language

models translate a piece of code into a piece of natural language comment. In contrast to

conventional comment generators, our approach capitalizes on the insight that structural

context can serve as a prompt to guide deep language models toward generating more

accurate comments. This thesis implements an explainable documentation generator

CProSum that transforms a code project into a code knowledge graph, effectively defining

the scope of contextual information for a target piece of code. This method enhances the

precision of the generated comments and aligns more closely with how developers interact

with complex codebases. By leveraging structured contextual data, our system offers a

more nuanced and reliable tool for program comprehension, setting a new benchmark for

comment-generation technologies.

Program Evolution It has been empirically observed that program evolution with

incremental code edits is commonplace. The latest approaches to code editing often

frame the task as generating edits based on known relevant prior edits and contextual

3

CHAPTER 1. INTRODUCTION

information and then formatted them into prompts to train language models. However, the

reality of practical code editing is often more complex. Several challenges complicate the

effective implementation of code edits: (i) Unknown relevant edits: in many cases, the

relevant prior edits might not be known upfront. An editing session may involve multiple

relevant and irrelevant edits to the modified code. (ii) Complex ripple effects: inferring

subsequent edits involves understanding the extensive ripple effects that an edit could

have across the entire project. This complexity adds a layer of difficulty in predicting and

managing changes effectively. (iii) Interactive edits: edits during a session are often not

isolated but interact with one another. This interaction requires sophisticated modeling to

ensure that the system can accurately interpret and respond to the dynamic nature of code

modifications. Addressing these challenges requires a nuanced approach that goes beyond

the current methods of training LLMs with static prompts. It necessitates the development

of more adaptive and context-aware systems that can handle the intricate dynamics of

real-world software development environments. This thesis proposes the CoEdPilot to

recommend the next code edit with the interaction of the users based on the selection of

prior edits and contextual information.

Program Adaptation Large-scale deep learning models are typically trained on exten-

sive datasets comprising code-comment pairs, effectively handling program generation

and summarization tasks. To manage and generalize from an exceedingly diverse training

corpus, leading industry companies continue to increase the scale of these models—from

millions to billions of neurons, as seen with GPT-3 and GPT-4. While scaling up to tens

of billions of neurons proves beneficial, it comes with substantial organizational training

and maintenance costs and a high barrier for everyday users. This thesis introduces a

novel and lightweight approach, Adacom, for enhancing the performance of small-scale

deep neural networks through on-the-fly model adaptation. It addresses potential distribu-

tion shifts that could affect model performance, ensuring that the trained model remains

reliable under varied inputs. Our idea is based on the observation that smaller models

often compromise their predictive accuracy for specific samples due to their limited scale.

By focusing on dynamic model adaptation, Adacom seeks to mitigate these limitations,

enabling relatively small models to deliver more consistent and accurate outputs without

the extensive resource requirements of their larger counterparts.

4

CHAPTER 1. INTRODUCTION

1.2 Summary of Contributions
The contributions of this thesis can be summarized as follows:

1. We propose LLM4PR —a framework that integrates program refinement to guide

LLMs and validate their generated code, transforming traditional program re-

finement into a more accessible and flexible process. The primary objectives of

LLM4PR are as follows:

a) Formally refine specifications to ensure clarity and rigor in defining desired

program behavior.

b) Automatically prompt and guide the LLM using the refinement calculus to

streamline the generation process.

c) Interact with the LLM to generate code that adheres to the refined specifica-

tions.

d) Verify the generated code to confirm it satisfies all specified constraints, thereby

ensuring correctness.

e) Learn and develop advanced refinement laws to enhance and extend the refine-

ment calculus, improving efficiency and applicability.

We have implemented LLM4PR using GPT-4 and Coq, leveraging the generative

capabilities of advanced LLMs alongside the formal verification strengths of proof

assistants. To evaluate LLM4PR, we compared it against state-of-the-art baselines

in program refinement and LLM benchmarks. Experimental results demonstrate

that LLM4PR efficiently generates more reliable code while significantly reducing

the time required for refinement and verification.

2. We propose CProSum to generate code comments and documents from ubiquitous

contextual information, assuming that the structural context of the code is helpful

to fill the information gap to create code summaries and documents. CProSum

consists of one context evaluator model and one comment generator model, which

are interactively trained for comment generation. On the one hand, the comment

generator learns to generate comments using the context selected by the context

evaluator. On the other hand, the context evaluator learns to score the contexts

5

CHAPTER 1. INTRODUCTION

and output useful contexts, allowing the comment generator to achieve the best

performance.

To facilitate such two models, we build a graph dataset that contains more than

7.4M nodes and 8.8M edges from the top 100 open-source Java projects by stars.

Extensive experimental results with eight baseline approaches show that CProSum

achieves significant improvement (16%-35% on BLEU4, 14%-29% on METEOR,

and 11%-24% on ROUGE-L) on the generated comment by effectively utilizing the

contextual information.

3. We built CoEdPilot, a language model-based method designed to predict possible

code edits by identifying relevant, useful edits and estimating their contributions

throughout the project. This tool harnesses the power of several transformer-based

neural networks to determine what to edit and how to implement code evolution

within a project, focusing on both the location and content of changes.

The operation of CoEdPilot is structured through a series of sophisticated compo-

nents:

• Initial Edit Analysis: After a programmer performs a code edit, optionally

accompanied by the description of the edit, the Subsequent Edit Analysis will

identify the most related files across all the files within the project and predict the

next edits that may occur.

• Edit-Type Detection: An edit-type detector infers the specific types of changes

for each line of code (e.g., no change, insertion, replacement) within the identified

relevant files.

• Edit Prediction: The Edit-content Generator generates specific edit suggestions

for code lines, utilizing the related prior edits identified by the Edit-dependency

Analyzer.

• Feedback Integration: The Subsequent Edit Analysis and Edit-content Generator

iteratively refine their recommendations by incorporating feedback from relevant

prior edits.

This framework ensures a comprehensive and interactive approach to managing and

recommending code edits effectively across projects. Our experiments comprehen-

sively demonstrate that CoEdPilot achieves high accuracy in predicting edits, with

6

CHAPTER 1. INTRODUCTION

an edit location prediction accuracy ranging from 70.8% to 85.3%, an exact match

rate for edit content of 41.8%. Furthermore, a user study involving 18 participants

across three editing tasks revealed that CoEdPilot significantly outperforms tools

like Copilot in assisting users with code edits. The study also provides valuable

insights for future enhancements of the tool’s design, confirming CoEdPilot ’s

effectiveness and potential for advancing code editing solutions.

4. We design Adacom to detect instances where the model might exhibit compromised

performance on a sample (i.e., source code) and re-adapt the model on the fly by

training with the most contributing training samples. Technically, Adacom re-trains

the model dynamically using these samples to enhance performance on the given

test sample.

Our extensive experiments conducted on seven deep comment generators and four

public datasets demonstrate the following:

a) Adacom accurately detects, on average, 61.5% of samples with compromised

performance.

b) Adacom significantly boosts the performance of comment generation, achieving

an average improvement of 14.9% in BLEU4, 12.2% in METEOR, and 7.4% in

ROUGE-L scores.

c) The entire adaptation process for an individual code sample incurs minimal

runtime overhead, requiring only 1.46 seconds for small-sized models and

3.16 seconds for medium-sized models, making it well-suited for on-the-fly

adaptation.

d) Adacom effectively adapts to out-of-distribution code samples, demonstrating

robustness in diverse scenarios.

1.3 Thesis Outline and Overview
This section briefly presents the thesis outline and overview of each chapter.

Chapter 2 begins by establishing a background of several key stages in the software

development life cycle, which helps delineate the role of our advanced models. First, the

program refinement process transforms the formal specifications into executable code

7

CHAPTER 1. INTRODUCTION

while preserving correctness. It highlights the balance between maintaining the speci-

fication’s original intent and ensuring the resultant code is reliable. Second, program

documentation is recognized as vital. It facilitates future software maintenance by pro-

viding precise and accessible information about the code’s functionality and architecture.

This stage ensures the software remains understandable and manageable over time, aiding

current and future developers. Third, the software evolution stage addresses the continu-

ous development of software after its initial release, responding to evolving stakeholder

needs and software engineering’s new demands. It focuses on adapting and enhancing

the software to meet these changing requirements following the prior edits while main-

taining system integrity. Finally, real-time adaptation aims to bridge the gap between the

training environment and real-world datasets by adapting models based on specific testing

examples.

Chapter 3 presents our innovative approach for program refinement, which leverages

LLMs in conjunction with rigorous, correctness-preserving refinement calculus. This

chapter includes the critical phases of software design, implementation, and verification in

the software development life cycle. We explore how LLMs’ flexibility and computational

power can be harmoniously integrated with traditional program refinement methods to

enhance the accuracy and reliability of the software development process. It discusses

the theoretical underpinnings and practical implementations of combining these two

distinct paradigms to achieve more reliable software. We also improve the efficiency of

the refinement process and ensure that the final product adheres closely to its original

specifications while maintaining high standards of correctness.

Chapter 4 details our methodology for generating code documentation, a crucial aspect

of software development that enhances understanding and facilitates future code main-

tenance. This chapter underscores the importance of bridging the gap between natural

language and programming languages, which is fundamental to creating adequate docu-

mentation. We explore techniques involving knowledge graphs and retrieval-augmented

generation methods to produce documentation that is not only more explainable but also

highly reliable. By integrating these technologies, we aim to generate comments that

provide more precise insights into the code’s functionality and design rationale.

Chapter 5 delves into an LM-driven solution to revolutionize how code edits are rec-

ommended within software projects. The advanced system enhances the decision-making

process by carefully discriminating relevant edits, exploring the interactive dynamics

8

CHAPTER 1. INTRODUCTION

between these edits, and meticulously estimating their potential ripple effects throughout

the project. By integrating a deep understanding of the code’s context and the inter-

dependence within the project structure, the solution aims to provide highly accurate

and contextually appropriate recommendations to the users. This chapter explains the

technological underpinnings of this approach. It showcases its application in real-world

scenarios, demonstrating its capacity to significantly improve code project development

by optimizing the code evolution process.

In Chapter 6, we explore innovative real-time adaptation methods to enhance neural

network models’ performance through on-the-fly model adaptation. We tackle the problem

that small-size neural models often face challenges in maintaining consistent predictive

accuracy across various samples. Due to their limited size and capacity, these models

typically compromise on the quality of predictions with large training datasets. By

implementing dynamic adaptation techniques, we aim to mitigate these shortcomings,

enabling these compact models to adapt and improve their performance in real-time.

This approach boosts their effectiveness and ensures they remain competitive with larger

models, providing more reliable and precise applications in downstream tasks.

We finally summarize the contributions of the thesis and discuss our future research

plan in Chapter 7.

1.4 Publications from the Thesis
Most of the work presented in this thesis has been published or accepted in international

conference proceedings. The work in Chapter 3 is accepted at The 52nd ACM SIGPLAN

Symposium on Principles of Programming Languages. The work in Chapter 5 is published

at The 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis

[123]. The work in Chapter 6 is published at the Proceedings of the 37th International

Conference on Neural Information Processing Systems [27]. The work in Chapter 4 has

been submitted for publication. I have contributed most to theory development and tool

implementation for all the above work.

9

CHAPTER 2. BACKGROUND

Chapter 2

Background

This chapter introduces the essential background of the key phases in the software

development life cycle. First, program refinement transforms the formal specification

into executable code while preserving correctness. Second, program documentation is

essential in providing readable information for future software maintenance. Thirdly,

program evolution is the continual development of software after its initial release to

meet the changing requirements. Finally, program adaptation seeks to adapt the program

generation model in real-time to the specific domain to tackle potential distribution shifts

between training and testing.

2.1 Trustworthy Program Generation
This section examines existing works on trustworthy program generation.

Language Model-based Program Generation. Recent years have seen many works

in program generation based on neural network models [214, 186]. Researchers mainly

focus on training a deep learning model that inputs a specification and outputs the de-

manding code with different model sizes, structures, input styles, and prompts. It starts

from sequence-based and tree-based approaches [122, 192] on the recurrent neural net-

work model [55, 83, 35] and gravitates to pre-trained (large) language models based on

transformer model [198], such as BERT [48], GPT [23], T5 [172, 80], GraphCodeBERT

[74], CodeT5+ [203], CodeBERT [57], CodeT [32], CodeT5 [204], StarCoder [114], and

Incoder [65].

CodeBERT [57] is a pre-trained bimodal model that bridges programming languages

(PLs) and natural language (NLs), enabling downstream tasks like code comment gen-

10

CHAPTER 2. BACKGROUND

eration and code search across these modalities. CodeBERT follows the architecture of

RoBERTa [127], which uses the encoder of the transformer[90]. CodeBERT’s pre-training

tasks include Masked Language Modeling (MLM) and Replaced Token Detection (RTD),

in which the natural language text and code sequence are concatenated by a unique token

[SEP] and fed into the encoder. The pre-training tasks mask or replace random tokens,

and then the decoder recovers the masked tokens or detects the replaced tokens. Following

their work, GraphCodeBERT [74] has the same RoBERTa [127] architecture. Compared

with CodeBERT, GraphCodeBERT’s input includes code tokens and a code data flow

graph among the variables. In the graph, each node represents a variable, and the edge

refers to the direction of data flow. GraphCodeBERT designs a graph-guided masked

attention, where a variable can attend to another variable only if a directed edge exists

in the data flow. Besides, code tokens and graph nodes can attend to each other if they

represent the same variable.

CodeT5 [204], unlike CodeBERT and GraphCodeBERT, focuses on a unified represen-

tation of programming languages (PLs) and natural languages (NLs). Recently, Incoder

[65] has proposed to be trained by switching the traditional left-to-right generation model

to an infilling training method. That involves randomly masking and rearranging code

fragments to handle arbitrary code that fills a bidirectional context. It effectively improves

the performance of tasks such as type inference, comment generation, and variable re-

naming. StarCoder [114] has been trained with over eight programming languages, and

the training materials include Git commits and GitHub issues. It outperforms existing

open-sourced LLMs and matches closed models such as code-cushman-001 (the original

Codex [151]) model. The pre-training tasks are designed, including randomly masking

spans with arbitrary length and predicting words within the span, tagging the identifiers in

the snippet, predicting the masked identifiers’ names, and bimodal dual generation.

Mitigating LLM’s Hallucination Hallucination, a critical challenge in LLMs, refers

to generating fabricated or misleading information. To address this issue, prior research

has explored various strategies to guide and verify LLM outputs, aiming to mitigate

hallucinations effectively.

Prompting techniques such as Chain-of-Thought [207], Tree-of-Thought [218], and

Graph-of-Thoughts [17] have been employed to provide structured reasoning or knowledge-

passing procedures, enhancing the reliability of LLM responses. Similarly, [91] introduces

11

CHAPTER 2. BACKGROUND

a self-monitoring and iterative prompting framework that leverages formal methods to de-

tect hallucinations and steer the LLM towards the correct specification. Furthermore, [31]

proposes specialized prompts based on counterexamples derived from model checking,

enabling LLM-driven code debugging and repair. Another notable contribution, Language

Model Programming (LMP) [18], extends traditional prompting techniques by integrating

text with scripting, allowing constraints to be explicitly specified over the model’s outputs.

Retrieval-based methods utilize external knowledge graphs or databases to correct

factual inaccuracies in LLM-generated content [133, 234], supplementing the model

with verified information beyond its training data. Additionally, collaborative approaches

involve using multiple LLMs to solve a single problem, relying on mechanisms such as

majority voting or consensus after natural language dialogues. Other studies employ LLMs

to produce diverse outputs, including specifications, code, and test cases, and subsequently

evaluate the consistency across these outputs [1, 137]. Another innovative direction

involves using additional LLMs to critically review and challenge the target model’s

outputs in a debate-like format, fostering a process of refinement through disagreement

and resolution [232].

2.2 Program Refinement
This section examines existing work on program refinement and program synthesis.

Traditional Program Refinement. Program refinement is a systematic approach to

developing programs through stepwise refinement, inherently involving an interactive

process alternating between programming steps and proof steps, each feeding back into

the other. As a long-established discipline, the concept of program refinement can be

traced back to foundational works such as [49, 61, 82]. The underlying theories[140, 11]

are grounded in the calculus of weakest preconditions.

Recent advancements have introduced formalizations of refinement calculus through

interactive theorem provers. For instance, [62] explores its application in Isabelle, while

[8, 180] leverages Coq[14] for similar purposes. The work in [8] focuses on deriving

imperative programs by applying validated refinement rules within proof mode. Conse-

quently, the final program design inherently integrates intermediate refinement steps along

with their correctness proofs. Users in [8] are required to specify loop invariants. In

12

CHAPTER 2. BACKGROUND

contrast, [180] introduces an alternative approach by allowing the specification of loop

bodies as input-output relations and employing the weakest pre-specifications rather than

the weakest preconditions to compute proof obligations.

The refinement calculus has also been applied to diverse domains. For instance, [52]

demonstrates its use in compositional modeling and reasoning about reactive systems.

Similarly, [102] applies the refinement approach to develop correct software product lines

within object-oriented and feature-oriented programming paradigms. Additionally, [56]

employs refinement techniques for requirements engineering, integrating argumentation

theory to address complex design requirements.

Program Synthesis The program synthesis community has developed numerous ap-

proaches, each leveraging unique methodologies to tackle this complex problem. Synthesis

based on verification, as exemplified in [188], involves an interplay between verification

and synthesis. Programs are transformed into predicates that must hold for all inputs,

ensuring correctness through a systematic verification process. Counterexample Guided In-

ductive Synthesis (CEGIS), such as Sketch [187], employs a generate-and-check paradigm.

In this approach, the synthesizer generates candidate programs, which are then validated

using an off-the-shelf checking procedure, iteratively refining the solution based on coun-

terexamples. Synthesis utilizing refinement types like [165] allows for specifying complex

program properties, catching errors early—even before the program is fully implemented.

This method benefits from round-trip type checking, which efficiently prunes the search

space at each step, and condition abduction, which incrementally generates programs.

Deductive synthesis systems, while powerful, are often challenging to implement due

to the difficulty of selecting appropriate rules. The Spiral system [169], designed for signal

processing kernels, overcomes this challenge by embedding extensive domain knowledge

into its rules and application strategies. This enables the fully automated transformation of

high-level specifications into efficient implementations. Similarly, [46] introduces the Fiat

system, built on Coq, which leverages Coq’s tactic language to achieve a high degree of

automation in deductive synthesis. Fiat facilitates the derivation of correct-by-construction

programs, streamlining the development process.

Recent advancements, such as [54, 22], focus on synthesizing library functions that

encapsulate standard functionality from a corpus of programs. These approaches rely on

the structure hypothesis, which posits that program search becomes tractable by reducing

13

CHAPTER 2. BACKGROUND

the search space of low-level code within a domain-specific language. This hypothesis has

proven effective in simplifying program synthesis tasks while maintaining generalizability.

Trustworthy LLM with Formal Methods. Recent advancements in formal mathemati-

cal proof generation leverage machine learning techniques for proof search and premise

selection. Several existing approaches, such as GPT-f [167], PACT [79], and Expert

Iteration [166], employ LLMs to generate actions, which are then used by search engines

to identify possible correct steps in a proof. Other methods like HTPS [106] and DT-

Solver [200], combine machine learning techniques to enhance the search. Thor [92]

integrates neural policy models with automated theorem provers (ATPs) to assist in proving

theorems. LeanDojo [217] facilitates interaction with the proof assistant Lean [141].

2.3 Program Verification
This section examines existing work on program verification and auto-formalization.

Theorem Proving. In theorem proving, users define a system using appropriate mathe-

matical logic, and the theorem prover determines whether a given goal can be inferred

from a set of axioms based on that logic. Theorem proving tools are broadly categorized

into two types: Interactive Theorem Provers (ITPs) and Automated Theorem Provers

(ATPs) [146].

Interactive Theorem Provers (ITPs)—also referred to as proof assistants—are designed

to assist users in constructing and developing proofs interactively. Examples include

Isabelle [162], Coq [14], Lean [141], Metamath [135], Atelier B [111], Twelf [67],

Agda [149], Mizar [176], HOL [150], RedPRL [9], ACL2 [99], and PVS [157]. These

tools rely on user guidance and interaction to build proofs.

Automated Theorem Provers (ATPs), on the other hand, are designed to automati-

cally prove goals without requiring user intervention. Examples include E-prover [183],

CVC4 [15], Vampire [104], and Z3 [45]. Additionally, some ITPs integrate ATP capabili-

ties to enhance automation in proof construction. For example, Isabelle uses Sledgeham-

mer [20], and Coq incorporates CoqHammer [43] to bridge the gap between interactive

and automated theorem proving.

14

CHAPTER 2. BACKGROUND

Trustworthy LLM with Verification. LLMs exhibit impressive proficiency in gener-

ating coherent and contextually relevant text based on their training data. Nonetheless,

a significant limitation of LLMs is their propensity to "hallucinate," producing not only

incorrect but often fabricated and misleading information. To address this issue, [91] intro-

duces a self-monitoring and iterative prompting approach. This method leverages formal

techniques to identify hallucinations and redirect the LLM toward generating accurate

specifications. Similarly, [31] employs specialized prompts informed by counterexamples

obtained through model checking. These counterexamples guide LLMs in debugging and

repairing code, enhancing their reliability and alignment with desired outputs.

Autoformalization. To utilize the rich context of informal proofs, researchers try to

translate the informal natural language text into formal language using large language

models, including [201, 210, 60, 236]. Recently, Lego-prover [211] established an

advanced learning paradigm that utilizes refined structural informal proof and retrieved

lemma to formalize problems of escalating complexity progressively. It performs better

than the current state-of-art models based on the ChatGPT.

2.4 Program Documentation
This section examines existing work on program documentation on input representa-

tion, model architecture, and some training techniques.

Input Representation Though deriving from NL machine translation, code comment

generation requires a specialized representation of the model input. Early summarization

techniques still take the code text as a token sequence to generate comments of program-

ming language (e.g., C# and SQL code) [89]. Following this approach, more specific code

information, such as AST (abstract syntax tree), CFG (control flow graph), and DFG (data

flow graph), is considered. Specifically, code token sequence and AST information are

fed into the model for comment prediction [109, 108]. Sequence encoders with a graph

component are designed to capture the code relation such as co-reference [58]. Moreover,

AST can also be decomposed to several AST-node paths so that their representation can

serve as the model input [7].

15

CHAPTER 2. BACKGROUND

Model Architecture Generally, the model architecture follows an encoder-decoder

structure. Treating code text as sequential data, various backbone models such as CNNs

[6], LSTMs [89, 205], and GRUs [109] have been employed. With advancements in

modeling techniques, attention mechanisms [109] and transformers [3, 38] have been

adopted to further enhance performance. Additionally, graph neural networks have been

utilized to capture abstract syntax trees (ASTs) [108] and data flow graphs [58] within a

piece of code.

Training Techniques Similar to pre-trained model as BERT [48] and RoBERTa [127],

CodeBERT [57] is proposed to pre-train the code token embedding with tasks mask lan-

guage model tasks and replace token detection on collected NL-PL pairs. Following their

work, GraphCodeBERT is further proposed to train a better embedding by considering

code structure (e.g., data flow). On the other hand, duality training is emerging [205, 219],

which considers comment-to-code translation and code-to-comment translation as a dual

problem. Thus, two-model structures are designed to train the models on the two tasks

simultaneously, further enhancing the summarization performance.

Prompt Learning and Context Fusion Prompt-based learning emerges as the large

language model gains popularity. Generally, such approaches consists of prompt-template

engineering [168, 44, 117], prompt-answer engineering [182, 94], multi-prompt learning

[98, 181], and prompt-based training [228, 117, 128].

Regarding context utilization for comment generation, [208] search and reuse com-

ments from cloned code, while other comment-reuse techniques [206, 144] borrow the

comment of a similar method and adapt them to fit as a new comment through neural

networks. Those techniques require a code search engine to look for similar code with

available comments, constrained by the database’s domain shifts. Different from their

approaches, we use the whole code project itself as the context information, to derive a new

comment on the target method. A more relevant work is proposed by Bansal et al. [13],

which selects a set of files or methods as its context based on some heuristic. Even though

the context is considered, the coarse definition of context provides insufficient support for

the model. Likewise, in [69], code-comment examples are retrieved as few-shot examples

for LLMs. Although the retrieved samples are semantically similar, they lack awareness

of the project structure.

16

CHAPTER 2. BACKGROUND

Code Comment Generator Recent advancements in code comment generation have

evolved from template-based techniques [138] to statistical language models [142], and

ultimately to neural network-powered approaches. Modern techniques focus on designing

various deep learning models to improve summarization performance, with innovations in

input structure representation, model architecture, training methodologies, and code token

embedding.

Deep learning models have gained significant traction in automating comment gen-

eration from source code, aiding in tasks like code documentation [134], program com-

prehension [85], and reverse engineering [78]. By treating code-to-comment generation

as a language translation or summarization task, advanced models such as CodeBERT

[57], GraphCodeBERT [74], CodeT5 [204], and CodeGPT [73] have set new benchmarks.

Moreover, ChatGPT [71] has proven effective in producing human-like interpretations

and concise summaries of code.

Retrieval Augmented Generator Given the prevalence of code duplication in large-

scale repositories, retrieval-based techniques have played a significant role. Early methods,

such as the vector space model [78] and code clone detection [209], were used to identify

the most similar code-comment pairs from a database. These approaches often relied on

manually designed rules to filter the closest matches and reuse their comments.

Recent research combines retrieval systems with neural network models to enhance

comment generation. Neural networks serve as semantic feature extractors to retrieve

comments from the most similar training samples. For instance, CCGIR [216] integrates

CodeBERT with the BERT-whitening operation [189] for retrieval. Other studies, such as

[87] and [224], propose dynamic strategies to choose between retrieval-based and neural

network-based methods. Re2Com [206] employs BM25 to identify the most semantically

similar sample and uses four encoders to process target code, similar code, the comment

of the similar code, and the code’s abstract syntax tree (AST). An attention mechanism

fuses the outputs of these encoders, which are then fed into a decoder to generate the final

comment. Similarly, [221] introduces a fusion layer to combine CodeBERT outputs for

both target and retrieved code. Zhang et al. [225] retrieve samples as prompts to guide the

generator, encouraging the use of locally important yet globally rare words.

17

CHAPTER 2. BACKGROUND

2.5 Program Evolution
Code editing is a specific case of code generation that involves generating subsequent

code edits based on either the code to be edited or a natural language comment. Among

the works addressing code editing [30, 238, 29, 233, 93, 116, 226, 121], Codit [30] was

the first to introduce tree-based neural networks for predicting code edits. Codit predicts

the syntax tree of the edited code and then concretizes the code based on the predicted

tree structure, outperforming traditional information retrieval methods. Building on this

tree-based structure, Recoder [238] incorporates an abstract syntax tree (AST) reader

alongside a code reader, further improving Codit’s performance.

MODIT [29] enhances model performance by incorporating code context and natural

language guidance into the encoder as additional input. With the advent of pre-trained

models, researchers have explored their applicability for code editing tasks. For instance,

CURE [93] leverages pre-trained models for automatic program repair, while CodeReview

[116] tailors pre-training models for code review scenarios. CoditT5 [226] extends the

pre-training of the CodeT5 [204] base model using inputs that combine natural language

comments with edited code hunks while generating outputs in the form of edit plans.

GRACE [75] leverages a prompting-based large language model [223] trained with

carefully crafted prompts to incorporate relevant code updates. Overwatch [233] employs

symbolic analysis of edit sequence patterns by encoding them into rules derived from

previous program transformations. These works have paved the way for significant

advancements in industrial code editing tools, such as Cursor and Devin.

2.6 Program Adaptation
Adaptation refers to the process of generalizing from one data distribution to another.

Transfer learning, as discussed in seminal works[51, 220], involves transferring parameters

from a pre-trained model to a new model tailored to a specific target dataset. This approach

leverages the knowledge encapsulated in the model’s parameters to expedite the learning

process on new data. Initially, the model is trained on a source dataset and then fine-tuned

with the target dataset’s training data. The fine-tuning way prepares the model to make

predictions on the target dataset’s unlabeled test data, necessitating some knowledge of

the target data’s labels and distribution.

18

CHAPTER 2. BACKGROUND

Domain adaptation techniques, highlighted in [66], focus on enhancing model per-

formance in a different domain (the target domain), aiming to match the performance

achievable in the original domain (the source domain). It requires access to the source

data and labels but only the data from the target domain. The training involves a cross-

domain loss that combines supervised loss from the source domain with a distribution shift

loss between the source and target data, thus minimizing the disparity in feature space

and fostering the development of domain-invariant features. Additionally, the test-time

training technique, as introduced in [191], updates the model during the testing phase

using unlabeled data self-supervised. The model initially trains using both supervised and

self-supervised losses on the source data and later adapts using only the self-supervised

loss from the unlabeled target data. In contrast, Wang et al. propose a novel adaptation

method in [199] that operates independently of the training data and loss. The model is

trained to minimize test entropy during the testing phase, allowing it to self-adjust based

on the feedback from its predictions, thus enhancing its adaptability and performance

under new conditions.

19

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Chapter 3

Program Refinement: From Specifica-
tion to Program

3.1 Introduction
Recent advancements in LLMs have significantly enhanced their capabilities in math-

ematics, logical reasoning, and programming [235, 174]. Tools such as GPT-4 [155]

and Copilot [70] have been widely adopted in industry, providing substantial support for

coding tasks and achieving performance levels surpassing the 50th percentile in program-

ming competitions. Despite these achievements, LLMs still face a major challenge in

hallucination, where they generate outputs that seem credible but are factually inaccurate.

Besides, user studies [196, 50] have shown that programmers often struggle to trust

and debug LLM-generated code due to its opaque generation process, which lacks trans-

parency and control. Even more concerning, research indicates that over half of ChatGPT’s

responses to programming questions contain inaccuracies [97]. Furthermore, recent math-

ematical proofs suggest that hallucination in LLMs is fundamentally unavoidable [212].

To illustrate this issue, we analyze a classic example: the square root algorithm, as

shown in Figure 3.1. Using the prompt:

Find the square root of N within the error bound e.

Both GPT-4 [155] and Copilot [70] generate code that is almost correct but contains

subtle bugs. Specifically, both programs fail in the case N < 1 as N ∗ N < N . Mathemat-

ically, the variable high should be larger than N + 1
4 because ∀N ∈ R, (N + 1

4)2 ≥ N .

If we give the GPT4 with the prompt “The upper bound is wrong when the input N is less

20

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

1 // GPT4 Output
2 def find_x(N, e):
3 low, high = 0, N
4 while low <= high:
5 mid = (low + high) / 2
6 square = mid * mid
7 if square < N and N < (mid +

e) * (mid + e):
8 return mid
9 if square < N:

10 low = mid + e
11 else:
12 high = mid - e
13 return mid
14 #

1 // Copilot Output
2 n = input()
3 n = float(n)
4 e = 0.0000001
5 low = 0
6 high = n
7 mid = (low + high) / 2
8 while abs(mid * mid - n) > e:
9 if mid * mid > n:

10 high = mid
11 else:
12 low = mid
13 mid = (low + high) / 2
14 print(mid)
15 #

1 // Repair when N less than 1
2 def sqrt(N):
3 x = N+1
4 while x * x > N:
5 x = (x + N/x) / 2
6 return x

1 // GPT4 + Constraints
2 // Spec: x^2 <= N < (x+e)^2
3 x = N+1
4 // since (N+1+e)^2 > N
5 while x*x > N:
6 x = x-e

Figure 3.1: Wrong implementations of square root algorithm generated by GPT-4 and
Copilot. The upper two programs are wrong in the case N < 1 due to the wrong upper
bound initialization. The third code fails when the variable x goes to the fixed point, while
the last code fails in infinite loops.

than 1.”, the newly generated code will still fail in several cases, like sqrt(5.1). This is

because the variable x will be fixed into a number but not terminate the loop. Similarly,

the final code (bottom right), created using traditional program refinement methods, still

encounters issues, including infinite loops in some scenarios. This example highlights

that while LLMs can generate code close to correctness, they often fall short in critical

areas, particularly when applied to traditional program refinement without integrating

formal verification systems. Addressing these limitations requires further advancements in

guiding LLMs with robust verification methodologies to ensure correctness and reliability.

Developing reliable LLMs for program generation continues to be a significant chal-

lenge. Existing methods primarily focus on two aspects: guiding LLMs during input

preparation and validating their outputs. Guidance strategies often involve providing

LLMs with detailed task-specific prompts to leverage their inherent capabilities effectively.

Recent research frequently adopts informal heuristics, such as the chain-of-thought rea-

soning approach, to enhance LLMs’ problem-solving processes [207]. However, rigorous

verification of deep learning models as a transparent, white-box process remains feasible

only for small, quantized neural networks, which are vastly different from the scale and

21

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

complexity of modern LLMs [86].

State-of-the-art verification methods for LLMs often rely on using multiple models

to evaluate outputs through majority voting or consensus in natural language [1, 137,

232]. However, prior research [212] demonstrates that hallucinations cannot be entirely

eliminated by merely altering prompts. Furthermore, it shows that an ensemble of LLMs

essentially behaves like a single model, failing to resolve hallucination issues effectively.

The refinement calculus [140, 11, 28, 180, 193] formalizes the stepwise refinement

approach to program construction. In this paradigm, a program’s required behavior is

first defined through a non-executable specification, which is then transformed into an

executable program via a series of correctness-preserving steps. However, this process

has traditionally been performed manually, making it both time-consuming and prone to

errors.

The reliance on manual intervention not only renders program refinement labor-

intensive but also limits its scalability and automation. Integrating LLMs and proof

assistants into the refinement process is a natural evolution, making refinement calculus

accessible to users without deep expertise in program refinement or theorem proving.

Additionally, many refinement steps involve handling sub-derivations for program sub-

components [26]. This segmented reasoning necessitates library-based approaches that

encapsulate functionality within modular abstractions, effectively managing complexity.

By narrowing the search space for applicable refinement laws and pruning candidates

for sub-components, this approach enhances scalability and improves the efficiency of

program refinement.

In contrast, our proposed tool, LLM4PR, takes a novel approach by explicitly con-

trolling the LLM workflow and integrating external knowledge sources with symbolic

reasoning systems. This approach applies constraints to guide the LLM and verifies

the generated code through program refinement. Inspired by human problem-solving

methods, where tools like calculators and code interpreters are used to tackle tasks beyond

immediate capabilities, we conceptualize LLMs as "constraint solvers." Their extensive

background knowledge and adaptability offer promising potential for automating program

refinement.

Our methodology enables the assertion of constraints to aid debugging and the ver-

ification of constraints to ensure the correctness of generated code. This represents a

significant leap in applying LLMs to program generation, shifting the focus from merely

22

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

reducing errors to achieving reliable and verifiable code. We implement this approach in

an automated tool called LLM4PR, which integrates formal program refinement calculus

with LLM capabilities to iteratively refine specifications and generate verified code. Our

framework defines a formal specification language, a corresponding program language,

and a refinement calculus to guide the transformation process.

To improve the efficiency of program refinement, LLM4PR employs a learning strategy

that constructs new refinement laws. These laws help compress and streamline the

refinement process, reducing its overall depth, as described in Section 3.4.3. We present

a top-down algorithm for decomposing high-level specifications into sub-components,

followed by a bottom-up algorithm that refines these sub-specifications step by step,

detailed in Section 3.5. LLM4PR also incorporates automated theorem provers (ATPs)

like Z3 [45] to verify the generated code and validate the application of refinement laws.

This combination ensures both correctness and justification for each refinement step.

To evaluate LLM4PR, we tested it on classical program refinement benchmarks and

standard LLM benchmarks, including an expanded version of Humaneval with additional

test cases [124], to assess the robustness of the generated code. The results, discussed in

Section 3.6, demonstrate the effectiveness of LLM4PR in generating reliable and verifiable

code.

3.2 Motivating Example
In this section, we use the square root (sqrt) algorithm to demonstrate our intuitions

behind LLM4PR. Unlike other program refinement works [140, 180], we generalize

the square root algorithm from integers to real numbers, showcasing how LLM4PR

guides LLMs and verifies the correctness of the generated code. Additionally, we explain

the learning strategy employed to extend refinement laws, enabling the evolution and

expansion of the refinement calculus. This approach is designed to simplify the program

refinement process and reduce its overall complexity.

3.2.1 Guide the LLM

The specification of the square root example is formulated as follows: given any

positive constant N and e, the program C is required to adjust the variable x such that x2 ≤
N , while simultaneously ensuring that (x + e)2 > N . Program refinement systematically

23

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Figure 3.2: The Success Version for Program Refinement on Square Root Algorithm

decomposes the specification into smaller, manageable components, enabling step-by-

step program construction. We initiate the process using the basic refinement calculus,

which comprises the fundamental laws introduced in the book [140], and demonstrate the

refinement process in Figure 3.2.

The first refinement step employs the sequential composition law to segregate the

constraints x2 ≤ N and N < (x + e)2 into distinct components. For the initial component,

the LLM can deduce a suitable assignment, such as x = 0, based on the specification.

This assignment can be verified through Hoare logic and supported by automatic theorem

provers (ATPs).

LLM4PR subsequently applies the iteration law to the second component, leveraging

the specification structure [Invariant, Invariant∧¬Guards] to construct an iterative process.

The iteration law decomposes the postcondition into two elements: a guard condition and

an invariant. This decomposition establishes an iterative framework that maintains the

invariant and modifies the variant until the guard condition no longer holds. The notation

↓ indicates that the variant strictly decreases during the iteration. LLM4PR incorporates

the constraints “Invariant ∧ Guards → Invariant ∧ Variant is strictly decreasing” into its

prompt, guiding the LLM to produce code, such as x = x + e. Finally, LLM4PR verifies

whether the generated assignment upholds the invariant and ensures the variant decreases.

It is important to note that this verification establishes only partial correctness, con-

firming that the variant decreases as required. Achieving total correctness additionally

necessitates verifying that the iteration eventually reaches a state where the guard condition

is violated.

24

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

3.2.2 Failure Feedback

The program refinement process can be approached in various ways. Figure 3.3

illustrates an alternative approach: initializing x with a large value and decrementing it

until the constraints are satisfied. This program starts by assigning x a value that satisfies

the invariant N < (x + e)2.

Traditional synthesis techniques struggle to deduce a valid assignment: find x such

that ∀N > 0, e > 0, (x > N + 1
4 → (x + e)2 > N). In contrast, the LLM might propose

assignments such as x = N or x = 1, but these lack verification or guidance toward a

correct solution.

LLM4PR is designed to verify the outputs and provide counterexample feedback to

guide the LLM towards a valid assignment. For instance, if the LLM suggests x = N ,

LLM4PR will reject this assignment and offer counterexample feedback until a correct

assignment, such as x = N + 1, is generated. Once a valid starting point is determined,

LLM4PR will apply the iteration law and instruct the LLM to generate code that satisfies

the constraints under the new specification.

The LLM might propose code such as x = x − e, and LLM4PR will formally derive

the corresponding proof obligation:

(N < (x + e)2 ∧ N < x2) → (N < (x′ + e)2 ∧ (N − x′2 < N − x2) ∧ x′ = x − e) (3.1)

However, ATPs will reject this code because the variant N − x2 is not strictly decreasing

in some cases.

Interestingly, while the two symmetric approaches to refining the square root algo-

rithm share similarities, the program from Figure 3.2 succeeds, whereas the program in

Figure 3.3 encounters an infinite loop. This asymmetry underscores the critical role of

formal program verification, even for seemingly straightforward algorithms.

Upon the first failure, the LLM receives feedback and may propose an alternative

assignment, such as x = (x + N
x

)/2, inspired by Newton’s method. However, ATPs reveal

that this approach may fail due to floating-point precision errors, causing the variant to

stagnate and fail to reach a fixed point in some cases.

If the LLM fails to generate verified code after several attempts, LLM4PR will back-

track to the last refinement step and explore an alternative refinement law to pursue a

different direction.

25

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Figure 3.3: A Failed Version for Program Refinement on Square Root Algorithm.

Figure 3.4: A Binary Search Version for Program Refinement on Square Root Algorithm.

3.2.3 Learning Strategies for Extending the Refinement Calculus

The program refinement procedures share notable similarities, beginning with the

sequential composition law, followed by the application of the assignment law for initializa-

tion and the iteration law for repetitive operations, as depicted in Figure 3.5. Semantically,

these procedures first initialize variables to establish the invariant, then preserve the

invariant while iteratively updating the variant until the postcondition is satisfied.

The sequential composition law, on one hand, structures the refinement process with

[Invariant, Invariant ∧ Guard], setting up the framework for iteration. On the other hand,

the future iteration law provides valuable guidance for the initial step of sequential

composition, aiding in the specification’s effective decomposition. When the LLM has

access to future information regarding the iteration law, it is more likely to split the

specification in the intended manner.

To identify and leverage common patterns in program refinement, we propose a learn-

ing algorithm that extracts patterns from refinement histories and extends the refinement

calculus. This algorithm processes a dataset of past refinement procedures, identifying

recurring patterns in both laws and specifications. The resulting extended laws encapsulate

these patterns, allowing specifications to be refined with fewer steps, thereby reduc-

26

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Figure 3.5: This example illustrates the process of learning and extending a refinement
law.

ing the search depth and verification effort. Importantly, all new laws are constructed

atop the foundational refinement laws, and their correctness is established through the

correctness-by-construction principle [21].

In summary, extending refinement laws offers the following benefits:

• Broadens the LLM’s scope from one-step refinement to anticipating future refine-

ment steps.

• Reduces the depth of refinement, saving time and resources during interactions with

LLMs.

• Simplifies program verification, lowering the reliance on ATPs.

3.3 The Language
We introduce the formal specification language Lspec, designed for articulating spec-

ifications, alongside the programming language Lpl, used in the generated code. To

facilitate the program refinement process, we define an annotated programming language,

which integrates both Lspec and Lpl. This integration is formally represented as a tuple

(Lspec, Lpl), with each component corresponding to one of the two languages. Given the

close interaction between these languages and LLMs, our focus is on crafting languages

that are both intuitive and effective for LLM applications.

27

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

3.3.1 The Specification Language

Our specification language, Lspec, follows the first-order logic (FOL) and the Coq

language [14]. LLMs are well-trained in understanding both FOL and Coq. While

adhering to the standard syntax and semantics of FOL, we emphasize the following key

notations: We utilize common relation operators and function operators found in SMT,

such as <, =, +, −, ∗, /,Array[Int],Array[Int:Int].

Syntax. Our specification is formulated using first-order logic (FOL) combined with the

theory of arrays. The complete syntax of Lspec is presented in Table 3.1, where the key

components are defined as follows:

• ⟨Specification⟩: Describes the specification to be refined.

• ⟨Definition⟩: Specifies the conditions that the variants must satisfy.

• ⟨Params⟩: Defines the variants and constants.

For ⟨atom⟩, ⟨Expr⟩0 represents the previous value of the expression, while ⟨Name⟩[⟨atom⟩]
denotes the array selection operation. Additionally, ⟨Name⟩[⟨atom⟩ : ⟨atom⟩] is used

for array slicing. The remainder of the syntax adheres to the standard FOL conventions

commonly used in SMT solving.

Semantics. We adhere to the standard semantics of first-order logic (FOL) as defined

in Coq, highlighting only the notable elements in Table 3.2. The theory of arrays is

implemented using relations and functions, consistent with its treatment in the existing

literature [37].

3.3.2 The Program Language

Our programming language is primarily based on the While language, which is

designed with simplicity to facilitate ease of understanding and generation by LLMs. The

complete syntax is provided in Table 3.3. This imperative language supports various data

types, including booleans, natural numbers, integers, floats, characters, and arrays. It

extends the basic While language with additional features like Array and Assert statements.

Arrays are indexed using natural numbers and support operations for reading, updating,

and slicing.

28

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Table 3.1: Specification Language Lspec Syntax

⟨Type⟩ ::= bool | nat | Z | float | array ⟨Type⟩
⟨Specification⟩ ::= Precondition:⟨Definition⟩ Postcondition:⟨Definition⟩

⟨Definition⟩ ::= ⟨Name⟩⟨Params⟩ := ⟨Expr⟩.
⟨Params⟩ ::= (⟨Name⟩ : ⟨Type⟩)

⟨Expr⟩ ::= ⟨Logit⟩ | ⟨Logit⟩ ∧ ⟨Expr⟩ | ⟨Logit⟩ ∨ ⟨Expr⟩ | ¬⟨Expr⟩ | ⟨QExpr⟩
⟨QExpr⟩ ::= forall|exists ⟨Params⟩ ⟨Expr⟩

⟨Logit⟩ ::= ⟨Term⟩ | ⟨Term⟩ < ⟨Logit⟩ | ⟨Term⟩ <= ⟨Logit⟩ | ⟨Term⟩ = ⟨Logit⟩
| ⟨Term⟩ > ⟨Logit⟩ | ⟨Term⟩ >= ⟨Logit⟩ | ⟨Term⟩ <> ⟨Logit⟩

⟨Term⟩ ::= ⟨Factor⟩ | ⟨Factor⟩ + ⟨Term⟩ | ⟨Factor⟩ − ⟨Term⟩
⟨Factor⟩ ::= ⟨atom⟩ | ⟨atom⟩ * ⟨Factor⟩ | ⟨atom⟩ / ⟨Factor⟩

⟨atom⟩ ::= ⟨Number⟩ | ⟨Variable⟩ | ⟨Const⟩ | true | false
| - ⟨Expr⟩ | (⟨Expr⟩) | ⟨Expr⟩0
| ⟨Name⟩[⟨atom⟩] | ⟨Name⟩[⟨atom⟩ : ⟨atom⟩]

Table 3.2: Specification Language Lspec Semantics

type T ⇐⇒ A value set T JeT K ∈ T

variants v : T ⇐⇒ A value v ∈ T JvK
constant c : T ⇐⇒ A value c ∈ T JcK = c

functional operator f(T1, T2, ...) : T ⇐⇒ Jf(a, b, ...)K = f(JaK, JbK, ...)
relational operator R(T1, T2, ...) : Bool ⇐⇒ JR(a, b, ...)K = R(JaK, JbK, ...)

To manage program size and complexity, we incorporate procedures. Each procedure

is defined by a name, a set of parameters, and an associated program body. The formal

semantics of the language align with those described in the literature [103].

Finally, we define the mixed programming language Lmix, which serves as a blend of

Lspec and Lpl for use in the program refinement procedure. Formally, Lmix is characterized

by a variant of ⟨Prog⟩, where sections of the program may still consist of specifications,

as outlined in Table 3.4. The “intermediate” language is employed during the refinement

process, allowing portions of the specifications to be refined into executable code, while

other sections remain as specifications. We refer to such constructs informally as “mixed

programs.”

29

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Table 3.3: Program Language Lpl Syntax

V ariable v Constant c Procedure f

Type ⟨T ⟩ ::= bool | nat | int | float | char | array⟨T ⟩
Expression ⟨e⟩ ::= c ∈ ⟨T ⟩ | v ∈ ⟨T ⟩ | ⟨e⟩ ⊕ ⟨e⟩ | not ⟨e⟩

| v[⟨e⟩] | v[⟨e⟩ : ⟨e⟩]
Operator ⟨⊕⟩ ::= and | or | == | < | <= | > | >= | != | + | − | * | /

Program ⟨Prog⟩ ::= pass | ⟨e⟩ = ⟨e⟩ | ⟨Prog⟩; ⟨Prog⟩ | f(vi)

| assert (⟨e⟩)
| if (⟨e⟩)then (⟨Prog⟩) else (⟨Prog⟩)
| while (⟨e⟩)do (⟨Prog⟩)

Procedure ⟨Proc⟩ ::= ϵ | def f (vi) (⟨Prog⟩)

Table 3.4: Language Lmix Syntax

⟨Mix⟩ ::= ⟨Spec⟩ | ⟨Prog⟩
⟨MixProg⟩ ::= pass | ⟨e⟩ = ⟨e⟩ | ⟨Mix⟩; ⟨Mix⟩ | f(vi)

| assert (⟨e⟩)
| if (⟨e⟩): (⟨Mix⟩) else: (⟨Mix⟩)
| while (⟨e⟩): (⟨Mix⟩)

3.4 The Refinement Calculus
This section presents our calculus for program refinement, which is grounded in the

weakest precondition semantics for programs [49]. Our refinement calculus primarily

adopts the notations and methodologies outlined by Morgan in [140]. The refinement

process involves a sequential application of refinement laws, transforming an initial speci-

fication into an intermediate state comprising a mixture of specifications and programs

(mixed programs), and ultimately resulting in pure program code. The process can be

depicted as follows:

specification ⊑ mixed program ⊑ · · · ⊑ mixed program′ ⊑ program.

3.4.1 Basics

Specification Formal specifications describe what a system should do, not how the

system should do it. In detail, a specification contains variants, a precondition, and a

30

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

postcondition, in the form

varibales : [precondition, postcondition].

Variables are the list of program variables; the precondition describes the initial states, and

the postcondition describes the final states of the program.

Refinement The refinement of a specification is the relation between two expressions

where one can solve the other. Informally, a specification is improved by weakening

its precondition or strengthening its postcondition. Formally, the refinement relation is

defined by the weakest preconditions of the related programs [26]. For program S and

postcondition P , wp(S, P) represents the weakest precondition where S is guaranteed to

terminate in a state satisfying P . Program S0 is refined by S1 denoted as S0 ⊑ S1, iff

∀P, wp(S0, P) → wp(S1, P) (3.2)

which states that S1 will preserve the total correctness of program S0. The program

refinement can be established in a linear sequence:

S0 ⊑ S1 ⊑ S2 ⊑ S3... ⊑ Sn (3.3)

which shows the refinement S0 ⊑ Sn with the transitivity of the refinement relation.

Besides, one can refine sub-components of the programs without affecting the total

correctness of the whole program following the congruence of Hoare logic.

T1 ⊑ T2 → P ; T1; Q ⊑ P ; T2; Q (3.4)

where T1, T2 are sub-components of the program P ; T ; Q, P and Q are the context

code of T . The program is successively created using refinement rules that define side

conditions preserving the correctness of the program, which is also known as Correctness-

by-construction [21].

3.4.2 Core Refinement Laws

This subsection presents the core refinement laws in the literature [140].

Lemma 1 (Strengthen Postcondition Law). Let pre (precondition) and post, post′ (post-

conditions) be any FOL formula, if post′ ⇛ post, then x : [pre, post] ⊑ x : [pre, post′].

31

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Lemma 2 (Weaken Precondition Law). Let pre, pre′ (preconditions) and post (postcon-

dition) be any FOL formula, if pre ⇛ pre′, then x : [pre, post] ⊑ x : [pre′, post].

The basic refinement calculus is defined as follows:

Skip It is a command where the final state of the program is the same as its initial state.

If the precondition entails the postcondition, the specification can be refined by skip.

Lemma 3 (Skip Law). If pre ⇛ post, then x : [pre, post] ⊑ skip.

Sequential Composition It refines a single specification to two smaller components.

Lemma 4 (Sequential Composition Law). Let mid be any formula except for pre or post.

x : [pre, post] ⊑ x : [pre, mid]; x : [mid, post].

Assignment The variant is updated with new expressions. We define post⟨x := E⟩ as

a condition where all occurrences of x in post are replaced with E. If the precondition

implies the updated postcondition after the assignment, the program can be refined

accordingly.

Lemma 5 (Assignment Law). Let E be any Expression, post⟨x := E⟩ assigns every x

in post with E. If pre ⇛ post⟨x := E⟩, then x : [pre, post] ⊑ x = E.

Alternation It is built with guarded branches.

Lemma 6 (Alternation Law). Let GG be the disjunctive normal form of the guards G0, G1,

, ..., Gi, ..., Gn, if pre ⇛ GG, then x : [pre, post] ⊑ if
⊔

i(Gi then x : [Gi ∧ pre, post])
where if

⊔
i Gi then means if G0 then ... else if Gi then

Iteration. Iterations like while loops are constructed using loop conditions, invariants,

and variants. An invariant, inv, is a formula that remains true throughout the execution

of the loop, provided it is true at the start. The variant, V , is a value that changes during

each iteration and ensures the termination of the loop by demonstrating progress toward a

specific condition.

32

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Lemma 7 (Iteration Law). Let Inv, the invariant, be any formula; let V , the variant,

be any integer-valued expression. Let GG be the disjunctive normal form of the guards

G0, G1, ..., Gi, ..., Gn then x : [Inv, Inv ∧¬GG] ⊑ while
⊔

i(Gi do x : [Inv ∧Gi, Inv ∧
(0 ≤ V < V0)]) where V0 is the initial value of V, while

⊔
i Gi do means while G0 do ...

else Gi do ... else Gn do.

Expand. It expands the variant list by introducing another variant. Note that Lemma 8

is an equality, which means the refinement goes both ways.

Lemma 8 (Expand Law). Let x be the origin variant and y be another variant and y0 be

the initial value of y, then x : [pre, post] = x, y : [pre, post ∧ y = y0]

Assertion. [11] It expands the precondition by introducing another condition. Note that

Lemma 9 is used for ensuring the termination of the loop in our program refinement.

Lemma 9 (Assertion Law). Let E be a boolean condition for the variable x, then x :
[pre, post] = assertE; x : [pre ∧ E, post]

Procedure. A procedure is declared by a name, some parameters, and a program.

Definition 1 (Procedure). procedure ⟨Name⟩ (⟨Variable⟩ : ⟨Type⟩) ≜ ⟨Prog⟩.

Lemma 10 (Procedure Value Specification). Given a procedure

procedure ⟨Name⟩ (value f : ⟨Type⟩) ≜ w, f : [pre, post] where w and f are different

variables. Let A be the expression of the ⟨Type⟩, then w : [pre⟨f := A⟩, post⟨f0 :=
A0⟩] ⊑ procedure⟨Name⟩(A).

Lemma 11 (Procedure Result Specification). Given a procedure

procedure ⟨Name⟩ (result f : ⟨Type⟩) ≜ w, f : [pre, post⟨a := f⟩] where w, a, and f

are different variables. Then w, a : [pre, post] ⊑ procedure⟨Name⟩(a).

In procedure, substitution by result is complementary to substitution by value since

it takes the value out of the procedure rather than into it. The literature [139, 10] has

established the correctness of the laws in this section. In particular, define a Hoare-triple-

like notation {pre}{prog}{post} that means that starting from a precondition that satisfies

33

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Figure 3.6: Given initial refinement laws and the associated refinement dataset, LLM4PR
derives new refinement laws with the learning algorithm to refactor the refinement steps
and reduce the depth of program refinement.

pre, if the program prog terminates, then the postcondition satisfies post. We represent

the result as follows sans proof:

Theorem 1 (Soundness of Core Refinement Laws). If x⃗ : [pre, post] ⊑ prog is derivable

from the laws in Sections 3.4.1 and 3.4.2, then {pre}prog{post} holds.

3.4.3 Law Learning Strategy

This section introduces our program refinement laws used for interaction with the

LLMs. The previous works [22, 54] in program synthesis focus on reducing the search

space of the low-level code in a domain-specific language for functional abstraction

learning. In contrast, LLM4PR learns high-level refinement laws to guide and verify the

LLM since the LLM has great capability for code generation. The algorithm is designed

to take a collection of refining processes and extract a set of components from them that

can be used to represent the origin refining more compactly. High-level refinement laws

enable specifications to be refined in fewer steps, thereby reducing both the depth of the

refinement search and the complexity of verification. Therefore, it is useful and efficient

to find patterns of the common combination of laws and derive new laws to extend the

original calculus. We then formally add them to the refinement calculus, which can be

used to solve similar refinement processes in the future.

34

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

3.4.3.1 Learning Procedure

LLM4PR begins by taking as input a dataset of refined problems along with the

atomic laws defined earlier. These atomic laws are designed to be low-level yet expressive

enough to refine the specifications in the dataset. The learning algorithm expands the

refinement calculus library by analyzing examples from the dataset, identifying common

refinement fragments in refined specifications, and abstracting these fragments into new

law primitives.

The output is a library of refinement law patterns and their associated specification

patterns. For instance, as shown in Figure 3.6, LLM4PR demonstrates that certain specifi-

cations, such as calculating square roots (Figure 3.2) or performing modulo operations

(Figure 3.12), can be refined using a combination of the sequential composition law,

assignment law, and iteration law.

The refinement process begins by splitting the specification into two parts: the first

is refined using the assignment law, while the second is refined using the iteration law.

Further analysis of these specifications reveals a pattern in which the postcondition can be

expressed as a conjunction of an invariant and a guard condition. Refinement proceeds

by initializing variables to satisfy the invariant, followed by constructing the iteration

structure.

From this pattern, we abstract and derive the initialized iteration law (Lemma 17).

While the base laws can accomplish equivalent refinements, using the advanced laws

derived from this learning process significantly shortens the refinement process and

reduces verification effort.

Law Pattern One refinement process is structured as a tree, where each node (illustrated

in Figure 3.6, left) represents a specification, and each edge corresponds to a refinement law

that connects these specifications. In this framework, the refinement laws are predefined

and finite in number. Given these constraints, we systematically traverse the tree via its

edges, converting the traversal into a sequential representation of the refinement process.

The algorithm then analyzes these sequences to identify common sub-sequences

derived from the refinement tree. By examining these sub-sequences, we extract law

patterns or recurring refinement strategies.

35

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Specification Pattern Once the law patterns are identified, we analyze their frequency

to derive corresponding specification patterns. To manage these patterns efficiently, we

construct an E-graph [47]. The E-graph is used to identify equivalences among various

expressions, facilitating transitions between high-level abstractions and low-level elements.

To reduce complexity, we first establish a set of rewriting rules at a high level of

abstraction, grounded in the semantics of the base laws:

Strengthen − postconditon : [pre, post] → [pre, post′]

Weaken − preconditon : [pre, post] → [pre′, post]

Skip : [pre, post] → END

Assign : [pre, post] → END

Seq : [pre, post] → [pre, mid]; [mid, post]

Alternation : [pre, mid] → [pre ∧ G1, post]; [pre ∧ G2, post]; ...

Iteration : [I, I ∧ ¬G] → [I ∧ G, I ∧ V ↓]

(3.5)

The token END means the end of the refinement. The E-graph data structure enables the

simultaneous representation and reasoning of multiple equivalent expressions, providing a

structured and systematic approach to applying rewriting rules.

The process begins with constructing an initial E-graph, where each node represents a

unique specification. Next, we identify nodes that can be merged based on the predefined

rewriting rules and merge them. The rewriting rules are then systematically applied to the

E-graph, expanding and merging nodes as necessary. After all rules have been applied, we

extract the most frequent sub-components from the E-graph.

Following this, the specification tree is expanded to a deeper level, allowing the

iterative construction and management of the E-graph from high-level abstractions to

low-level details. The goal is not to learn new refinement laws for completeness but to

derive frequently-used laws to enhance efficiency. As illustrated in Figure 3.6 (middle),

both specifications share the same high-level pattern:

[pre, I ∧ ¬G] → [Pre, I]; [I, I ∧ ¬G] → END; [I ∧ G, I ∧ G′] (3.6)

where we derive a new law and formally add it to the refinement calculus.

36

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

3.4.3.2 Extended Laws

Skip. The new skip law gives the variant an initial value, utilizing the fact that the initial

and final variables have the same value.

Lemma 12 (Initialised Skip Law). Let x0 denote the initial value of variant x, if (x =
x0) ∧ P ⇛ Q, then the specification x : [P, Q] ⊑ Skip.

Proof. Directly from the skip law in Lemma 3 as P ⇛ Q.

Seq. We extend a new sequential composition law to divide one specification into two

parts flexibly based on the Strengthen-Postcondition Law and Weaken-Precondition Law.

Lemma 13 (Flexible Sequential Composition Law). Let P, Q, A, B, C, D be some formulate,

if (P ⇛ A) ∧ (B ⇛ C) ∧ (Q ⇛ D), then the specification x : [P, Q] ⊑ x : [A, B]; x :
[C, D].

Proof. First, use the sequential composition law in Lemma 4, x : [P, Q] ⊑ x : [P, B]; x :
[B, Q]. Then refine the two parts with the weaken-precondition law in Lemma 2, x :
[P, B] ⊑ x : [A, B]; x : [B, Q] ⊑ x : [C, Q]. Finally, refine the second part with the

strengthen-postcondition law in Lemma 1, x : [C, Q] ⊑ x : [C, D].

Assign. We extend two assignment laws. The initialized assignment law utilizes the

initial values of the variants to simplify the further proof for pre ⇛ post⟨x := E⟩. The

following assignment law allows any assignment in its second half, provided the changed

variants.

Lemma 14 (Initialized Assignment Law). Let x0, y0 denote the initial value of variant

x, y, E be any Expr in the programming language, post⟨x := E⟩ replaces every x in

the formula post with E. If (x = x0) ∧ (y = y0) ∧ pre ⇛ post⟨x := E⟩, then x, y :
[pre, post] ⊑ x = E.

Proof. Use the assignment law in Lemma 5 as pre ⇛ post⟨x := E⟩.

Lemma 15 (Following Assignment Law). Let E be any Expr in the programming

language, post⟨x := E⟩ replaces every x in the formula post with E. x : [pre, post] ⊑ x :
[pre, post⟨x := E⟩] ; x = E.

37

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Proof. First use the sequential composition law, x : [pre, post] ⊑ x : [pre, post⟨x :=
E⟩]; x : [post⟨x := E⟩, post]. Then, refine the second part using the assignment law,

x : [post⟨x := E⟩, post] ⊑ x = E.

Alternate. The if-else alternation law simplifies the original formulation by excluding

the need for explicit proof of the guard condition.

Lemma 16 (If-else Alternation Law). Let P, Q, and G be some formulae, then the

specification x : [P, Q] ⊑ if (G) (x : [P ∧ G, Q]) else (x : [P ∧ ¬G, Q]).

Proof. As Pre ⇛ G∨¬G based on the law of excluded middle, the lemma can be directly

implied from the alternation law in Lemma 6.

Iterate. We extend the origin iterative law to float numbers, which need to find an upper

bound to guarantee the loop termination in finite time. The newly introduced initialized

iteration law begins by assigning an initial value that satisfies the invariant. The second

specification ensures that the invariant is preserved while the variant V changes during

iteration, continuing until the negation of the guard condition is satisfied.

In practice, leveraging the convergence of monotonic sequences of real numbers, we

replace the existing condition with the monotonic and bounded condition specified in

Lemma 18. To prevent infinite loops, we incorporate an assertion to verify that the variant

V decreases by at least the error bound determined by the precision of the floating-point

representation.

Lemma 17 (Initialised Iteration Law). Let P, I, and G be some formulae, V be any variant

expression, and i and M are positive integers, then the specification x : [P, I ∧ ¬G] ⊑ x :
[P, I] ; while(G) do (x : [I ∧ G, I ∧ (∃i < M, Vi → ¬G))].

Proof. First, applying the sequential composition law from Lemma 4, we derive:

x : [P, I ∧ ¬G] ⊑ x : [P, I]; x : [I, I ∧ ¬G].

Next, we refine the second part using the iteration law from Lemma 7. It is important

to note that, for scalability, we replace the condition for integer-valued variants with a

general variant expression. To ensure termination of the iteration, there must exist a state

of the variant that negates the guard condition after a finite number of iterations.

38

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Lemma 18 (Assertion Iteration Law). Let P, I, and G be some formulae, V be any variant

expression, then the specification x : [P, I ∧ ¬G] ⊑ x : [P, I] ; while(G) do (x :
[I ∧ G, I ∧ V < V0]; assert V ̸= V0).

Proof. First, follow the initialized Iteration Law. Then, note that the float precision error

is e, then we have ∃i = ⌈V0
e

⌉ < M, V < 0 → ¬G.

Traverse. We introduce a traverse law to address problems involving arrays. The formula

P incorporates the variants l and i, which may represent equations that recursively define

a sequence. The subsequent refinement must ensure that the invariant P (l, i) is maintained

and that progress is made toward P (l, i+1) in accordance with the principles of induction.

Lemma 19 (Traverse Law). Let l be the list of type T, natural numbers m and n denote

the range, pre and P be some formula, l : [pre, ∀i : nat ∧ m ≤ i < n → P (l, i)] ⊑ l, i :
[pre, l[m]]; i = m ; while(i < n) do (l, i : [P (l, i), P (l, i + 1)]; i = i + 1).

Proof. First, applying the Wxpand law and the sequential composition law from Lemma 4,

we derive:

l, i : [pre, l[i] ∧ i = m]; l, i : [l[i] ∧ i = m, l[i] ∧ i = n].

Next, refining the second part using the initialized assignment law (Lemma 14) and

the iteration law (Lemma 7), we obtain:

i = m ; while(i < n) do (l, i : [P (l, i), P (l, i) ∧ 0 ≤ n − i < n − i0]).

Finally, applying the following assignment law from Lemma 15 to the specification,

[P (l, i), P (l, i + 1) ∧ 0 ≤ n − (i + 1) < n − i]; i = i + 1,

This can be further simplified to match the target specification.

The new laws are designed to be directly used by LLMs. The refinement calculus is

transformed into background knowledge embedded within prompts, guiding the LLM in

applying these laws effectively. The detailed instructions provided in the refinement laws

enhance both interaction with the LLM and automated theorem prover (ATP) verification.

These new laws are extensions of the core refinement laws, and their correctness can

be formally derived from the core principles. A summary of these refinement laws is

presented in Figure 3.7.

39

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Figure 3.7: Illustration of the Refinement laws.

Theorem 2 (Soundness of Derived Refinement Laws). If x⃗ : [pre, post] ⊑ prog is

derivable from the laws in Sections 3.4.1 to 3.4.3, then {pre}prog{post} holds.

Proof. Immediate from the proof of individual laws.

3.5 Interaction with LLM and ATPs
This section presents our approach, integrating the program refinement calculus with

LLMs and ATPs.

3.5.1 Overview

Figure 3.8 illustrates an overview of our approach. In general, the formal specification,

written in Lspec, is first transformed into an abstract syntax tree (AST). LLM4PR then

extracts the conditions from the specification to input into the LLM.

40

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Figure 3.8: Overview of LLM4PR with the integration of LLMs and program refinement.

The LLM selects an appropriate refinement law to refine the specification based on

the description and constraints of the formal specification. It subsequently generates the

associated code that adheres to the selected law. LLM4PR, in turn, generates the proviso

condition required by the refinement law and constructs verification scripts to validate the

code produced by the LLM.

The ATPs attempt to automatically verify the generated scripts, providing either a

success message or an error message as output. If the ATP verification fails, the LLM

regenerates the code; if it succeeds, LLM4PR saves the verified code and produces a new

specification for the next refinement step.

If multiple failures occur during verification, LLM4PR backtracks to the previous

refinement step and specification, interacting with the LLM to select an alternative refine-

ment law and generate the corresponding code.

Table 3.5 shows an example schema of LLM4PR’s actions based on the refinement

calculus. The refinement process can be visualized as a specification tree, where the

nodes represent specifications (each containing a precondition and postcondition), and

the refinement laws define the links between the nodes. Each node in the tree includes its

associated specification and the possible refinement paths, along with the generated code

for each path.

41

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Table 3.5: LLM4PR will generate the specifications and conditions for further verification
in ATP.

Law GPT4 LLM4PR
Skip - verify P ⇛ Q
Sequence M new spec [P, M]; [M, Q]
Assignment x = Expr verify P ⇛ Q⟨x := Expr⟩
Alternation G new spec if (G) (x : [P ∧G, Q]) else (x : [P ∧¬G, Q])
Iteration I, G new spec x : [P, I]; while(G) do(x : [I ∧ G, I ∧ (∃i <

M, Vi → ¬G)])
Traverse P new spec l : [pre, l[m]]; i = m; while(i < n) do (l, i :

[P (l, i), P (l, i + 1)]; i = i + 1)

3.5.2 Complex Formal Specification

The process involves breaking down complex specifications into smaller, manageable

sub-specifications and refining them bottom-up to build the complex specification.

Specification Formalization The initial input to LLM4PR is a formal specification,

which requires the user to formalize their requirements. While LLMs can automatically

translate informal descriptions into the formal specification language Lspec, users must

verify the correctness of this transformation. Ensuring the accuracy of this step is crucial

for maintaining the integrity of the refinement process. For the formal methods community,

this verification step should not present a significant challenge and is essential—without

it, the notion of correctness cannot be upheld.

Top-down Specification Decomposition We assume that all formal specifications

verified by the user are accurate and align with their requirements. The specification

decomposition algorithm begins with a high-level specification encompassing the entire

system or software under development. Some functions may already have been refined

and stored in the library, while others require new refinement.

Each specification is decomposed into smaller sub-specifications, iteratively breaking

them down until all components are either refined or represented by atomic elements in

the defined language. To match sub-specifications with those already stored in the library,

we retrieve similar specifications.

Weaker preconditions allow for handling a broader range of potential inputs during

implementation but reduce the approach’s flexibility. Initially, the LLM retrieves pos-

42

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

sible equivalent specifications from the library and verifies their correctness using the

logic laws of Lemma 1 and Lemma 2. Stronger postconditions, on the other hand,

restrict implementation freedom, requiring closer alignment with the specified outputs.

Retrieved specifications replace their corresponding sub-specifications where applicable.

Finally, LLM4PR shares all specifications, including sub-specifications, with the user for

validation.

Bottom-up Refinement For sub-specifications that are not yet refined, LLM4PR applies

the procedure outlined in Definition 1 to formalize and refine them from the ground up.

Each sub-specification is independently refined and validated, ensuring correctness at

the module level before integration into the broader system. This bottom-up approach

emphasizes thorough refinement and validation of each component, enhancing overall

quality. The refinement steps, along with associated programs, are stored in the refinement

library. These stored refinements can be reused for new specifications sharing the same

preconditions and postconditions.

By combining top-down decomposition and bottom-up refinement, LLM4PR mini-

mizes redundant specification efforts while ensuring consistency and reliability through

the reuse of validated specifications.

3.5.3 Interaction with LLMs

Refinement-augmented LLMs We enhance the performance of LLMs in program

refinement by embedding the refinement calculus as background knowledge. The LLM

utilizes refinement laws through retrieval-augmented techniques to improve its effec-

tiveness. Furthermore, we tailor the LLM specifically for program refinement tasks by

designing prompts based on the formal specification language Lspec and the program

language Lpl introduced earlier. To align the LLM with these tasks, we fine-tuned it using

examples from Morgan’s book [140], ensuring its outputs adhere to the principles of

formal program refinement.

Dynamic Guidance with Prompts A prompt serves as an instruction guiding the

LLM’s output. Traditional static prompts, such as Program Refinement for the following

specification, are replaced with dynamic, task-specific prompts. We treat the LLM as

43

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

a constraint solver, constructing prompts that include logical formulae representing the

constraints of the specifications.

These formulae detail the requirements the LLM’s output must satisfy, ensuring

precise alignment with task-specific needs. Based on these prompts, the LLM selects the

appropriate refinement laws and generates the corresponding code. Since each refinement

step has its own generated specification, historical refinement steps need not be retained

due to the congruence principles of Hoare Logic.

Prompt Engineering Prompt engineering involves the careful design of queries or

inputs to optimize responses from an AI model. This practice is particularly relevant in

machine learning and AI-driven interactive systems [19].

Our prompts are straightforward yet comprehensive, containing all relevant details

about the refinement rules and specifications:

Given the refinement rule ... The previous code ... is not correct since ... Provide a

correct code satisfying the specification [pre, post].

3.5.4 Interaction with ATPs

Passively Verify. Once the LLM selects a refinement law and generates the associated

code, LLM4PR uses ATPs to verify whether the code satisfies the constraints dictated by

the chosen refinement law.

If the ATP confirms that the constraints are satisfied, LLM4PR applies the refinement

law to the current specification, generating a new formal specification along with the

verified code. If the verification fails, the ATP provides failure messages and potential

counterexamples. The LLM then uses this feedback to generate alternative code. The retry

process has a predefined limit.

In cases of repeated failure, LLM4PR reverts to the last successful refinement step and

the associated valid specification. The LLM receives detailed feedback on the failures,

including counterexamples and the last valid specification, to guide further attempts.

Modular Verification. Figure 3.9 illustrates the interaction between LLM4PR and

the program refinement library. LLM4PR implements modular verification by dividing

44

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Figure 3.9: The specification tree and the program refinement library.

the refinement process into smaller steps and splitting specifications into independent

modules. Each module, with its unique constraints, is verified separately by ATPs. This

modular approach localizes errors to specific parts of the system, facilitating efficient error

identification. Additionally, it allows for parallel verification, reducing overall verification

time.

If a module fails verification, the ATP provides targeted feedback to the LLM, including

specific reasons for failure and counterexamples. This focused feedback enables the LLM

to refine or correct the problematic module without affecting other parts of the system.

If all modules pass verification, LLM4PR integrates them into a complete and verified

refinement step, ensuring the correctness of the overall program refinement process.

3.6 Evaluation
In this section, we first conduct a quantitative analysis of the most popular benchmarks,

comparing them against state-of-the-art LLMs and a program refinement baseline.

3.6.1 Research Questions

We evaluate LLM4PR to address the following research questions:

• Can LLM4PR generate more robust programs compared to the baselines?

• Can the learning algorithm, together with the extended refinement calculus, reduce

the time and depth required for the refinement process?

45

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

• Can the top-down splitting and bottom-up refining methodology for construct-

ing a library of program refinement enhance LLM4PR’s ability to solve complex

problems?

3.6.2 Baselines

GPT-4. Generative Pre-trained Transformer 4 (GPT-4) [155] is a multi-modal large

language model developed by OpenAI, representing the fourth generation of its GPT series.

As a transformer-based model, GPT-4 adopts a paradigm involving pre-training on both

public datasets and data licensed from third-party providers, focusing on predicting the

next token. Following pre-training, the model undergoes fine-tuning with reinforcement

learning based on human feedback.

CorC. CorC [177, 102] is an integrated development environment (IDE) for constructing

programs in a simple while language, adhering to the Correctness-by-Construction (CbC)

paradigm. Starting from a specification, this open-source tool assists developers in refining

programs through a series of refinement steps, with the correctness of each step verified

using the theorem prover KeY [77].

3.6.3 Benchmarks

We evaluate LLM4PR using the example programs provided in the baseline [177] and

the HumanEval benchmarks, which are widely used in code generation evaluations [155,

151, 203]. Additionally, to assess the correctness and robustness of the generated code,

we incorporate the EvalPlus dataset [124], which includes the same examples but with, on

average, over 80 times more test cases than the original.

For formal specification evaluation, we use the Coq version of the dataset [16], and

we manually review all specifications in the HumanEval dataset. This manual validation

is essential for establishing correctness criteria, which is a necessary step in program

verification and not an obstacle to the evaluation process.

46

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

3.6.4 Implementation

Our approach is implemented using Coq [14], CoqHammer [43], and GPT-4 by

OpenAI [155]. Automatic verification is facilitated through CoqHammer, an open-source

automated reasoning tool. In line with CoqHammer’s design, we integrate four automated

theorem provers: cvc[15], vampire[104], Eprover[183], and Z3[45], to enhance the

automation of verification tasks.

Informal and formal specifications are input into GPT-4 to generate code snippets,

which are then tested against corresponding test cases. We employ GPT-4, the state-of-

the-art LLM, as the foundation of LLM4PR. To customize GPT-4 for our approach, we

use instruction tuning [229] with classic refinement examples [140], enabling the model

to learn extensions of the refinement calculus.

3.6.5 Experiment Results

The following sections give the results of the experiment.

3.6.5.1 Robustness of Code Generation

Table 3.6 presents the evaluation results for the HumanEval benchmarks. We include

the latest powerful LLMs like LLama3 [175], GPT-3.5, and GPT-4 as baselines. The

results for these baselines are taken from prior work [124].

To ensure fairness, we extend GPT-4’s evaluation by incorporating formal specifi-

cations alongside natural language descriptions. When using only natural language de-

scriptions, GPT-4 demonstrates the best overall performance among all LLMs. However,

all LLMs experience a performance decline from HumanEval to EvalPlus, as EvalPlus

includes more challenging test cases, revealing bugs in the generated code that fail the

additional tests. In contrast, LLM4PR maintains consistent performance between Hu-

manEval and EvalPlus due to its use of verified code, ensuring correctness. Theoretically,

the code generated by LLM4PR can be regarded as canonical solutions, independent of

the number of test cases.

We conducted a further error analysis comparing GPT-4 and LLM4PR. GPT-4 often

exhibits carelessness, overlooking edge cases such as negative numbers or zero. This

observation aligns with the experimental finding that incorporating formal specifications

enhances GPT-4’s performance, as these specifications provide useful constraints.

47

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Table 3.6: A comparison of LLM4PR and LLMs on the HumanEval and EvalPlus bench-
marks.

Model Llama3 GPT-3.5 Claude-3 GPT4 LLM4PR
Input Specification NL NL NL NL NL+ FS FS
HumanEval Passed 125 126 136 145 148 150
EvalPlus Passed 116 116 126 128 142 150

LLM4PR’s failures are primarily attributed to specifications involving complex data

structures or unsupported functions. Overall, LLM4PR outperforms the LLMs, generating

more robust and reliable code.

3.6.5.2 Efficiency of Program Refinement and Verification

Table 3.7 presents the evaluation results for the example programs in the CorC base-

line [177]. Since the CorC baseline is not automated, we assume that the user has

completed all the necessary refinement steps manually.

Across all evaluated algorithms, LLM4PR demonstrates a general reduction in both the

number of refinement steps and the proof times compared to CorC and the Initial variants,

which rely solely on the core refinement laws. The observed variability in refinement steps

and proof times among different algorithms reflects differences in their complexity and

optimization challenges.

Algorithms with inherently complex structures, such as pattern matching and logarith-

mic approximation, appear to benefit more significantly from the inclusion of advanced

refinement laws and optimizations. Notably, the experiment reveals a significant difference

in proof time for complex algorithms, with LLM4PR requiring substantially less time than

both CorC and the Initial variant.

3.6.5.3 Capability of LLM4PR

Table 3.8 compares two approaches: one utilizing LLM4PR and the other relying solely

on a basic top-down splitting and bottom-up refinement algorithm without a program-

refined library. The evaluation was based on 50 examples selected from the HumanEval

benchmarks, specifically those containing more than two sub-questions. The refinement

process was conducted with a maximum allowable duration of 600 seconds.

Using LLM4PR significantly reduced the average number of refinement steps from

48

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Table 3.7: Our LLM4PR and baseline CorC comparison on several program refinement
problems.

Metrics # Refinement Steps Proof Time(s)
Approach CorC Initial LLM4PR CorC Initial LLM4PR
Linear Search 5 5 4 0.4 0.2 0.1
Max Element 9 10 5 1.2 1.0 0.2
Pattern Matching 14 16 8 54.9 35.8 24.5
Exponentiation 7 7 5 15.2 14.4 10.4
Log Approximation 5 5 4 42.7 22.9 20.1
Dutch Flag Sort 8 9 5 5.7 4.3 4.1
Factorial 5 5 3 3.6 1.5 0.4

21.4 to 5.6 and shortened the refinement time from approximately 514 seconds to 275

seconds. Additionally, the refined programs generated with LLM4PR were more compact,

demonstrating that the bottom-up approach results in smaller, well-organized library

programs.

The modular verification enabled by LLM4PR ’s library further minimized proof

times and decreased the LLM’s fallback rate. This highlights LLM4PR ’s effectiveness

in guiding the LLM to produce accurate code that adheres to the given constraints while

refining specifications.

Overall, LLM4PR greatly enhances the program refinement process by streamlining

the workflow, reducing complexity, and increasing both the reliability and success rates of

program generation.

Table 3.8: A comparison of LLM4PR and its variant without the program refinement
library is performed on the EvalPlus benchmarks.

Model No Library LLM4PR
#Refinement step 21.4 5.6
Refinement time(s) ∼514 ∼275
Proof time(s) ∼215 ∼87
Fall-Back rate(%) 26.87 9.45
Program size 41.3 14.1
Pass rate(%) 52 82

49

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

1 // pre: (N:float)(e: float) := N >= 0 /\ e > 0
2 // post: (x:float)(y: float) := x*x <= N < y*y /\ y <= x+e
3 # LLM selects Sequential Composition Law: Part 1
4 // pre_1:= N >= 0 /\ e > 0
5 // post_1:= x*x <= N < y*y
6 # LLM selects Assignment law
7 x = 0
8 y = N+1
9 # verify pre_1 -> post_1(x := 0, y := N+1)

10 # Part 2
11 // pre_2:= x*x <= N < y*y
12 // post_2:= x*x <= N < y*y /\ y <= x+e
13 # LLM selects Iteration law: I(pre_2) G(~(y <= x+e))
14 while y > x+e:
15 if y > x+e:
16 // pre_2_1:= pre_2 /\ x+e < y
17 // post_2_1:= pre_2 /\ (...)
18 # LLM selects Alternation law G((x+y)/2*(x+y)/2 > N)
19 if (x+y)/2*(x+y)/2 > N:
20 // pre_2_1_1:= pre_2_1 /\ (x+y)/2*(x+y)/2 > N
21 // post_2_1_1:= post_2_1 /\ (...)
22 y = (x+y)/2
23 # verify pre_2_1_1 -> post_2_1_1(y := (x+y)/2)
24 else:
25 // pre_2_1_2:= pre_2_1 /\ (x+y)/2*(x+y)/2 <= N
26 // post_2_1_2:= post_2_1 /\ (...)
27 x = (x+y)/2
28 # verify pre_2_1_2 -> post_2_1_2(x := (x+y)/2)

Figure 3.10: Program Refinement Code Example of the Square Root Algorithm

3.7 Case Study
In this section, we show three examples of the program refinement code.

3.7.1 Square Root Algorithm

We demonstrate how LLM4PR addresses the motivating example from Section 3.1

in Figure 3.10. The verification statement serves as the proviso condition required to

apply the refinement law. For clarity, we omit the iteration termination check condition in

(...).

In detail, the LLM sequentially splits the original specification into two parts. The first

specification defines x and y such that x2 ≤ N < y2, which can be implemented using

assignment. Importantly, the assignment for y must satisfy the postcondition constraint

N < y2, avoiding potential LLM-generated bugs like assigning y = N as shown in

Figure 3.1.

50

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Figure 3.11: Bubble Sort and Quick Sort with Program Refinement.

The second specification preserves the invariant x2 ≤ N < y2 and adjusts the variants

x and y iteratively until the condition x + e ≥ y is met. This iteration can be implemented

with a loop. The invariant, guard condition, and variant are derived directly from the

specification. The LLM reduces the gap between x and y by assigning either x or y to

the mean of x and y. Additionally, alternation introduces constraints that strengthen the

precondition, simplifying the derivation of the postcondition.

Compared to LLM-generated code, LLM4PR ensures that each refinement step is

verified, as each step is paired with its corresponding specification. The LLM is utilized

to select the refinement law and automatically generate associated code based on the

constraints it generates. These constraints are built automatically according to the chosen

law and the generated code in LLM4PR. When a refinement law is applied, the new

specification is formally generated in alignment with the refinement laws.

3.7.2 Sorting Algorithm

We utilize the bubble sort and quick sort algorithms as representative examples to

demonstrate the extensibility of our refinement framework. Following the approach in

[26], we first build the array type, SwapList, which is characterized by its sole ability to

perform swap operations:

swap : SwapList → num → num → SwapList (3.7)

For the sorting problem illustrated in Figure 3.11, the specification comprises a

SwapList and a postcondition ensuring that the array elements are arranged in ascending

order. The refinement process starts by initializing the variable i = l, establishing the

51

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

invariant that the sublist L[l : i] is sorted when i = l. Subsequently, the refinement

expands this sorted sublist incrementally from L[l : i] to L[l : i + 1], with a corresponding

decrease in the variant r − i. A similar refinement strategy applies to the variable j.

Both i and j iterate within bounds, progressing from the left to the right under specified

constraints, reflecting the iterative nature of these integer variables.

(1) Law Learning. Such array-based iterative structures are commonplace in the dataset.

The combination of the core refinement laws serves as a basis for deriving new advanced

refinement laws based on the correctness-by-constructions [21]. These insights lead to

the formulation of a new refinement law (we called a traverse law) that merges Seq and

iteration laws, thereby streamlining the origin refinement process. Intuitively, LLM4PR

will learn the patterns of law sequence in the refinement process that have been built and

conclude the combination of refinement laws that appear frequently to build a new law

for future refinement. The traverse law is derived for traversing the elements in the array

from one index to another index. It also simplifies the proof obligation just to maintain

the invariant P (i) without loop termination checking.

(2) Recursion. Another refinement way is to break down the original problem into

smaller, similar sub-problems, a strategy widely recognized as recursion. In this context,

the sequence is divided into two parts: the elements in the first part are less than or equal

to L[k], while those in the second part are greater. Each part is then sorted independently.

The base case is the sorting of a single-element sequence. The associated proof obliga-

tion requires demonstrating that the three newly introduced postconditions collectively

imply the original postcondition. This can be established through structural induction.

(∀i∀j ∧ l ≤ i ≤ k < j < r, L[i] ≤ L[k] ≤ L[j]) ∧ (∀i∀j ∧ l ≤ i < j < k, L[i] ≤ L[j])∧

(∀i∀j ∧ k ≤ i < j < r, L[i] ≤ L[j]) → (∀i∀j ∧ l ≤ i < j < r, L[i] ≤ L[j])
(3.8)

(3) Law Matching. Further refinement seeks to disentangle conditions related to i, j

and prove that the revised conditions can deduce the original requirements. The previously

learned traverse laws can not apply since the invariants L[i] ≤ L[k] and L[k] ≤ L[j] are

disrupted when L[k] changed, but a general iteration law can match the new specification

that is in a conjunction normal form. LLM4PR starts with initializing k = l to satisfy the

52

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

Figure 3.12: Prime Factorization with Program Refinement.

first condition and then iterating j to ensure L[k] ≤ L[j] while the invariant L[i] ≤ L[k]
is maintained.

3.7.3 Prime Factorization Algorithm

Programmers widely use functional abstractions to handle complexity effectively.

In program refinement, the specification naturally defines the inputs and outputs of a

functional abstraction. Based on this, we design a top-down approach to decompose the

specification and a complementary bottom-up strategy to refine and synthesize functional

abstractions that encapsulate standard operations.

(1) Formal Specification. We presume that all user-verified formal specifications are

correct and aligned with their requirements. LLM4PR engages users to help formalize

high-level specifications. Some functions specified may already have been refined and

stored in the library from prior use, while others may require new refinements. For

instance, as illustrated in Figure 3.12, the requirement is specified as follows:

Prime factorization of any given number is to break down the number into its factors until

all of its factors are prime numbers.

The formalized specification of prime factorization consists of IsPrime, IsFactor, and

ListProduct. We assume that only ListProduct, which represents the products of all the

elements in the list, has been refined and stored in the library. Then, LLM4PR will use

the top-down algorithm to split further and formalize the specification of IsPrime and

IsFactor. Each sub-specification has its own specification, and they will be split into

smaller specifications like mod until all elements defined in their specifications have

been refined or atomic elements in the language. Finally, LLM4PR will share all the

specifications with the user to ensure the correctness of the formal specification.

53

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

(2) Functional Abstraction. The above top-down algorithm formalizes and splits the

high-level specification into a unilateral connected digraph of sub-specifications. Then, a

bottom-up algorithm will refine the remaining sub-specifications, synthesize the programs,

and store them in the library. In this example Figure 3.12, LLM4PR will first refine the

mod with the iteration law where the invariant is x = q · y + r and the guard condition is

r ≥ y. The LLM generated code is q = q + 1; r = r − y and LLM4PR verifies as follows:

x = (q + 1) · y + r − y → x = q · y + r (3.9)

(3) Refinement and Verification. For prime factorization, LLM4PR will use the traverse

law to initialize the variables with the invariant P (i′):

∀i(1 < i ≤ i′ ∧ isPrime(i)∧ isFactor(i, N) → i ∈ ListP)∧n ·Product(ListP) = N

(3.10)

It means that for all i from 2 to i′, ListP contains all the elements that are prime numbers

and factors of the N . LLM4PR first initializes the n with N satisfying the precondition n =
N and the ListP with empty array satisfying the condition n · Product(ListP) = N since

n = N . The associated verification of the initialization is also conducted in a sequence,

following the value of prior variables. This modular verification in program refinement

reduces the workload of the formal verification system and enables the LLM4PR to

prune the proof for different subprograms. The proof of the invariant can also reuse the

modularized proof of IsPrime and IsFactor without considering the details of these two

functions. Another point lies in the optimization of the conditions. In the if-condition of

the program, the LLM will generate the code IsFactor(i,n) since

P (i′) ∧ isFactor(i′, n) → isPrime(i′) (3.11)

Intuitively, if i′ is not a prime, k exists that is less than i′ and is a factor of i′. Since i′ is a

factor of n and n is a factor of N , k is also a factor of N , which contradicts the invariant

that all factors of N that are less than i have been considered. It is a non-trivial resolution

for the prime factorization algorithm to reduce the time and proof of IsPrime.

3.8 Threats to Validity
First, if a refinement lacks proof of loop termination in the iterative law, we still

consider it partially correct. To address this limitation, we provide additional iteration

54

CHAPTER 3. PROGRAM REFINEMENT: FROM SPECIFICATION TO PROGRAM

laws in Section 3.4, which avoid relying on termination conditions. This approach

acknowledges that proving termination is a complex and generally undecidable problem.

Second, LLM4PR is designed to guide the LLM in generating robust code rather than

building specifications. It still requires human input to provide formalized specifications,

similar to other formal methods tools.

Third, the current set of data structures and learned refinement laws is relatively

straightforward, as LLM4PR’s capabilities depend on the power of LLMs and automated

theorem provers (ATPs). To mitigate this limitation, users can actively interact with the

LLM during the program refinement process by selecting refinement laws, constructing

proofs, and verifying them.

55

CHAPTER 4. PROGRAM DOCUMENTATION

Chapter 4

Program Documentation

4.1 Introduction
Code documentation and summarization are important to facilitate code compre-

hension, which in turn supports various programming tasks such as code review [178],

refactoring [129, 63], and code education [42, 185]. Recent years have seen that neu-

ral network driven code documentation and summarization techniques are emerging [7,

109, 3, 206, 89, 6, 25, 202, 227, 215, 237, 184, 222, 164, 115, 68]. Many researchers

regard code summarization as a machine translation problem (e.g., translating English

to German). Taking the program code tokens as the source and labeled comments as

the target, researchers have proposed various language models to translate or summarize

the former to the latter. The models are rapidly evolving, with the neuron size growing

from millions to billions, gravitating to the state-of-the-art ChatGPT [154]. Recent works

also utilize retrieval-augmented techniques(RAG) to boost the generator’s performance,

using similar examples. While achieving good performance in generating comments,

existing techniques are designed with a close-world assumption, i.e., the comments are

only derived from the code body of the target function.

However, unlike English-to-German translation, where an English word is usually

informative to infer a German counterpart, there is usually an information gap between

the target code and its comments. The retrieval selector and generator in the base-

lines consider only the target method body and ignore the rich structural information

of code entities like method invocations, declarations, and co-locations. Compared

to translating the code into the comments in a general way, a more precise summa-

56

CHAPTER 4. PROGRAM DOCUMENTATION

4.36
0.26

10.81

0.97

59.53

3.39
8.71

0.55
0

10

20

30

40

50

60

70

Co
nt

ex
t C

on
tr

ib
ut

io
n

Pe
rc

en
ta

ge
 (%

)

caller method/field ~ (CodeBERT Detection)
callee method/field ~ (CodeBERT Detection)
co-locating method/field ~ (CodeBERT Detection)
hosting file ~ (CodeBERT Detection)

Figure 4.1: The lexical contribution of different context types to the comment of a target
method.

rization requires the solution to be project-specific. For example, in the bazel project,

a method as getSize(){return size;} has the comment as “Returns the

uncompressed size of the entry data, or -1 if not known”. The

concepts such as “compression”, “entry”, and “data” are hard to derive just by observing

such a method body.

In practice, the programmers infer the comments with an open-world assumption: they

can be derived from any helpful source (e.g., co-located methods, caller/callee methods,

or documentation) as long as they help understand the code and accomplish the tasks.

Besides, as [131] points out, the most prevalent prediction errors of current models are

caused by missing information, which inspires us to include any helpful information to

predict the code comment.

Our empirical studies on 100 popular Java projects from GitHub (with top number of

stars) show that (1) there is a large lexical gap between the comments and the method bod-

ies and (2) the representative deep language models serve as a limited remedy. Figure 4.1

further shows the linguistic contribution of different types of context to the comment of a

target Java method. Each color represents a type of context. For one color, each left bar

(deeper color) indicates the ratio of nontrivial words in the comments, which are missing

57

CHAPTER 4. PROGRAM DOCUMENTATION

in the target method body and present in a specific context. Each right bar (shallower

color) indicates the ratio of the above nontrivial words that CodeBERT can recommend.

For example, given a Java method, on average, 59.53% nontrivial words in its comment

can be found in one of the methods co-located in the same Java file but do not appear

in the code body. Nevertheless, a CodeBERT-based comment generator [57] can only

recommend 3.39% of the missing words in the method body since the co-location file

information is missing. The numbers are 4.36%, 10.81%, and 8.71% for the context

type of caller method/field, callee method/field, and hosting file (i.e., class name, class

comments, etc.) while existing state-of-the-art techniques such as CodeBERT [57] serves

as a very limited remedy. Generally, many nontrivial words in comments usually include

project-specific domain knowledge, which indicates that they are important in a specific

project but rare words in the general projects. Therefore, it is difficult for a language-

model-based comment generator to synthesize project-specific concepts just by training

on general projects.

While context is known as an essential remedy, it is still an open question of how to

(1) define context scope, (2) retrieve helpful context, and (3) fuse the retrieved context

with the target method to facilitate the comment generator. The state-of-the-art approaches

extract the contextual information from code in the same file [81], code in the same project

[13], and similar code pieces [225, 126]. The latest approaches [145, 68] mainly utilize

sentence transformers to embed the code body to a vector and search for similar code

examples. The retrieved code and comments will be the context and integrated with the

target code to predict the target comment. In detail, given a pre-defined scope (e.g., a

retrieval database, many files, or projects), some similar methods are selected and fed into

an encoder to have their embeddings. Finally, a new embedding consisting of original

and retrieved-context embeddings is further fed into a transformer model to generate

comments.

Although these approaches can be effective in a way, they still suffer from the technical

challenges of selecting and aggregating useful contexts.

• Context Selection: First, the useful contextual information does not necessarily ap-

pear in the training set or the retrieval database, especially when the programmer is

working on a new project. Such structural awareness capability is also a limitation in

the GPT-4 model. Second, the contextual information of a method can include both

58

CHAPTER 4. PROGRAM DOCUMENTATION

practical and irrelevant contexts. Third, although many retrieval-augmented methods

use comments from similar code as a template, similar code does not necessarily imply

similar comments.

• Context Aggregation: Given a piece of useful context code, effectively extracting and

integrating the contextual information to generate the comment is still a nontrivial task.

The state-of-the-art usually sets a fixed number of retrieved contexts or a threshold for

similarity score. Then, it aggregates all the context and target code into one encoder

embedding for the decoder to generate the comment. It is unclear how much contextual

information contributes to the boosted performance of the comment generator. It remains

a question whether the performance of the comment generator will continue to increase

if more contextual information is provided. Since the signals of both context and the

target code are mixed, it is unclear whether the aggregated embedding is (1) informative

enough to derive the precise comment and (2) discriminative enough to avoid noisy

signals.

We propose a novel approach, CProSum (Contextual Prompt Based Summarization),

to address both the problems of context selection and aggregation. Our rationale lies in the

fact that a context evaluator can be trained to evaluate the structural context information

and predict the score of how much the context will help the comment generator. The

comment generator can be trained interactively with the selected context as prompts for

generating the comment and computing the score feedback to the evaluator. CProSum

has the following advantages: First, most structural contexts, such as classes, fields, and

callees in the knowledge graph, usually exist in real-world scenarios and can be easily

accessed. Second, structural context code, like co-location methods, may have different

code bodies but usually share similar commenting styles with the target code as they

typically come from the same programmer or team. Third, the context evaluator can

score each context to clearly indicate how much it will contribute to the performance

boost and guide the user in balancing choosing shorter input tokens or achieving better

performance. Finally, the prompt and attention mechanism can help the model extract

helpful information and remove the noise based on the score and structural type.

Technically, given a target code, we define its contextual scope by tracking its diverse

code relations to capture its calling methods, called methods, co-locating methods, declar-

ing class, etc. We regard the existing neighbors within three hops in the code knowledge

59

CHAPTER 4. PROGRAM DOCUMENTATION

graph as the structure context. Then, we learn a context evaluator and the comment

generator interactively. On the one hand, the context evaluator is trained to predict a score

based on how much the context will boost the comment generator’s performance. On

the other hand, after ranking the scores predicted by the context evaluator, the comment

generator is trained to utilize that useful context as a prompt to generate new comments.

Based on the new comments and gold comments, new scores will be calculated and sent

back to the context evaluator. The two models are trained iteratively and interactively until

the loss of both models converges. Note that our solution is non-intrusive. Our comment

generator follows an encoder-decoder architecture and can be adopted by many existing

language models [57, 74, 3, 109]).

To evaluate our approach, we construct a graph dataset of the top 100 Java projects

by stars, using defined code relations as contextual information. We implement our

graph-based solution based on transformer [90], which outperforms eight baselines in the

comment generation tasks. Besides, we find that equipping the state-of-the-art transformer-

based comment generator with CProSum framework can well improve their performance

by, on average, 21.11% on BLEU4, 18.14% on METEOR, and 14.03% on ROUGE-L. Our

quantitative and qualitative analysis further shows that CProSum can effectively extract

and utilize the context information.

In summary, this work makes the following contributions:

• We design, CProSum, a context-aware comment generator with a context evaluator,

where the latter learns to score the context of the target code, and the former utilizes the

useful context as a prompt to generate more precise and adaptive comments.

• We construct a graph dataset regarding comprehensive project information from 100

popular Java open-source projects, including 7.4M nodes and 8.8M edges, facilitating

the follow-up structural context-augmented approaches in the SE and AI community.

• We show that CProSum can significantly improve the performance of code summa-

rization. The performance boost is effective across different transformer-based model

architectures and code samples under different distributions.

60

CHAPTER 4. PROGRAM DOCUMENTATION

4.2 Overview

4.2.1 Motivating Example

Figure 4.2 shows a code example extracted from the Spring-framework project [194].

The pink region is the comment of the code. The target method shares a similar com-

ment with the second code retrieved by our tool CProSum, although they have different

code tokens. The third method retrieved by baselines [145] and [68] with the highest

score 79.1% has a different code comment. The fourth comment generated by GPT4

has many details to explain the method step by step but lacks the key point that the

sort is via getPatternComparator. However, our retrieved examples will contain this

method invocation information as they have similar structural information in the knowl-

edge graph. This will further help the GPT4 model to include the method invocation

PathMatcher#getPatternComparator(String) that is missing in both the code body and

the retrieved example by baselines. In this example, the target method getMatching-

Condition() checks if any of the patterns match the given message’s destination and

returns a new instance containing the matching patterns. The patterns sorted by their speci-

ficity using {@link PathMatcher#getPatternComparator(String)}. In

the Spring-framework project, there are 33 methods called getMatchingCondition(),

and there are no regulars among the code tokens similarity and comment similarity. For

example, semantic similarity-based methods like [145] and [68] utilize the sentence trans-

former model st-codesearch-distilroberta-base model to score the code tokens. Due to the

limitations of transformer modes, short and token-similar codes will have a higher score

like the third code in Figure 4.2. However, they may have a contrasting code comment

that would mislead the comment generator.

Besides, the standalone target code body lacks the structural information of method

invocations, imports, and types. Figure 4.3 shows that the target method Destination-

PatternsMessageCondition getMatchingCondition() have similar graph

structure with our retrieved method PatternRequestCondition getMatching-

Condition(). In other words, the retrieved method by CProSum and the target method

in Figure 4.2 share a similar graph structure in the knowledge graph, although they differ

on code tokens. The two methods are called by their neighbors (but do not share the

same), with code names like matchSortPatterns, compareNumberOfMatchingPatterns,

61

CHAPTER 4. PROGRAM DOCUMENTATION

Figure 4.2: An example extracted from the Spring-framework project.

62

CHAPTER 4. PROGRAM DOCUMENTATION

Figure 4.3: An example shows how our knowledge graph structure-based approach
outperforms the traditional retrieval method.

matchPattern, and matchDirectPath. They share the same 13 imports, like PathMatcher.

The graph structure indicates similar functionality, although the code tokens may dif-

fer. The same code comment tokens, such as "check if any of the pattern," "returns

an instance," and "sorted via PathMatcher," shed light on the prediction of the target

method comment. Their neighbors, such as matchDirectPath, matchPattern,

matchSortPatterns, are quite similar, although they are not the same nodes in the

knowledge graph. The two methods share 13 imports, including the key method invocation

PathMatcher. The structural information and context information regarding the target

method of these graphs will help predict the comment.

Generally, we have the following observations:

• Large Language Models Compared to the ground truth, the classical LLMs generate

detailed but less concise comments that largely borrow superficial words like return type

and method name. However, 33 methods named getMatchingCondition() in

the spring-framework project with quite different comments. We need to describe each

function and its characteristics.

• Retrieval-augmented Methods Retrieval-based methods first try to find the most

similar code representation in the pre-defined database. Even if some related code (in

the spring-framework project) of the target code appears in the retrieval database, the

retrieval still lacks structural information beyond similar code body tokens.

• Usefulness of CProSum CProSum find a more structurally similar code from the code

knowledge graph where the similar template of the code comment and the relevant con-

textual information is present in the retrieved comment. Besides, the comment generator

63

CHAPTER 4. PROGRAM DOCUMENTATION

RequestMethodsRequestCondition

Check if any of the HTTP request methods match the given

request and return an instance that contains the matching

HTTP request method only.

CorsUtils

/** Create a new

instance

 * with the

given request

 * methods. */

RequestMethodsRequ

estCondition(Reque

stMethod

requestMethods) {

...

}

call

1. RequestMethodsRequestCondition

 getMatchingCondition(ServerWebExchange exchange) {

2. if (CorsUtils.isPreFlightRequest(exchange.

3. getRequest()))

4. return matchPreFlight(exchange.getRequest());

5. if (getMethods().isEmpty())

6. if (OPTIONS.equals(exchange.getMethod()))

7. return null;//handle OPTIONS transparently,

8. //if no explicit declaration

9. return matchRequestMethod(

10. exchange.getRequest().getMethod());

11. }

1. boolean isPreFlightRequest

(ServerHttpRequest request){

2. HttpHeaders headers =

3. request.getHeaders();

4. return request.getMethod() ==

6. HttpMethod.OPTIONS &&

7. headers.containsKey(

8. HttpHeaders.ORIGIN)

9. }

ground-truth comment in the Spring project

target method

Figure 4.4: An example for context-based comment generation, extracted from the Spring
framework.

of CProSum will also include the graph context information shown in Figure 4.3 to

enhance the generator with more related hints.

4.2.2 Our Solution

Given the target code in Figure 4.4, CProSum takes three steps for its comment

generation.

Step 1. Structure Extraction CProSum first extracts the related neighbors with different

code types. In this example, the target method has six method invocations, 14 co-located

methods, and one declaring class. In real-world scenarios, some co-located and caller

methods may be unavailable. To enlarge the structural context, we also include the method

invocation of the existing caller and callee methods, where a caller is a function that

calls the target method, a callee is a function that was called, and a co-located method is

a function that shares the same class with the target method. We regard some existing

neighbors within three hops in the knowledge graph as the structure context.

Step 2. Structure Evaluation Then, CProSum search in the code knowledge graph to

find some potential of structurally similar entities with the structural evaluator model. The

evaluator will generate the graph embedding of the target code and scores all the nodes

in a static analysis order that first checks the methods in the same public class, then the

methods in the same package, and the same project, and finally goes through the nodes in

the knowledge graph. We then rank all the scores and use the top-k nodes as prompts for

64

CHAPTER 4. PROGRAM DOCUMENTATION

the comment generator. To improve performance, the user can stop the search procedure

early or set a threshold for fast searching.

Step 3. Context Fusion Finally, CProSum fuses the target code tokens with the selected

examples and the graph structure, including code type and scores, into a context-aware

comment generator model. The generator can take any backbone model such as Code-

BERT[57] or Code T5[204].

4.3 Approach

4.3.1 Embedding-based Representation

Embedding-based representation is a method of encapsulating the semantic and syn-

tactic properties of software specifications into high-dimensional numerical vectors. It can

handle more complex and nuanced specifications that might be difficult to express formally.

Embedding-based representation is useful for machine learning applications, where the

ability to approximate and generalize from examples can enhance system performance.

This approach is derived from techniques commonly used in natural language processing

(NLP) and machine learning, where embeddings have proven highly effective in capturing

the nuanced meanings of words and sentences.

Vector Space Modeling Code tokens are converted into high-dimension vectors to cap-

ture the semantic meaning. Techniques such as word embeddings (e.g., Word2Vec [136],

GloVe [163]) or sentence embeddings (e.g., BERT [48], Sentence-BERT [173]) are typi-

cally employed. Similar code tokens will be closer together in this space while differing

ones will be farther apart.

Feature Extraction Deep learning models like Convolutional Neural Networks (CNNs)

or Transformers can be used to process these vectors, extracting and learning complex

patterns that represent the underlying features of the code tokens. This allows the model

to understand and quantify relationships, dependencies, and patterns within the code that

might not be readily apparent.

The advantages of Embedding-Based Representation are:

65

CHAPTER 4. PROGRAM DOCUMENTATION

• Flexibility: Capable of handling a wide range of code, including those that are less

structured or too complex for traditional formal-based methods.

• Scalability: Easily scales with the addition of new data, making it suitable for

dynamic environments where specifications are frequently updated or expanded.

• Integration: Seamlessly integrates with other AI components, supporting systems

where machine learning models need to interact with or adapt to changing code

distributions.

getMatchingCondition()

RequestMethods
RequestCondition

isPreFlightRequest()

ServerWebExchange

call

parameter type

matchRequestMethod()
call

return type

knowledge
graph
space

contextual
embedding

space

d1

d2
d3

d4

Figure 4.5: The contextual embedding space before learning

getMatchingCondition()

RequestMethods
RequestCondition

isPreFlightRequest()

ServerWebExchange

call

parameter type

matchRequestMethod()
call

return type

knowledge
graph
space

contextual
embedding

space

d’1<d1 d’2<d2

d’4>d4 d’3>d3

Figure 4.6: The contextual embedding space after learning

Knowledge Graph Enhanced Representation We explore achieving a more infor-

mative embedding representation with the knowledge graph. To illustrate our idea, we

66

CHAPTER 4. PROGRAM DOCUMENTATION

show how the embedding of the program entities (e.g., method, class, etc.) in the em-

bedding space can change in Figure 4.5 and Figure 4.6. We represent the target method

for comment generation as an ellipse with a red border; the program entities are con-

tributable to generating comments as one with a green border and not as contributable

as one with a black border. The neural network encoder is guided to project a program

entity in a knowledge graph space into a contextual embedding space so that the program

entities that contribute more to their comments are closer. In Figure 4.6, the embedding

distance between the target method and comment-contributable/incontributable entities

(projected in the contextual embedding space) are learned from random distance to the

distance ordered by comment contribution. We design a contextual fusion solution to

make comment-contributable entities closer.

Table 4.1: Meta-path schemas defined on the code knowledge graph

Context Meta-path Type Context Semantics
<method, call, method> a method calls another method
<method, called-by, method> a method is called by another method
<method, has-return-type, class> a method has the return type of a class
<class, as-return-type, method> a class serves as the return type of a method
<method, has-return-type, interface> a method has the return type of an interface
<interface, as-return-type, method> an interface serves as the return type of a method
<method, has-parameter-type, class> a method has a parameter type of a class
<class, as-parameter-type, method> a class serves as a parameter type of a method
<method, has-parameter-type, interface> a method has a parameter type of an interface
<interface, as-parameter-type, method> an interface serves as a parameter type of a method
<method, use, field> a method uses a field
<field, used-by, method> a field is used by a method
<class, declare, method> a class declares a method
<method, declared-by, class> a method is declared by a class
<class, declare, field> a class declares a field
<field, declared-by, class> a field is declared by a class
<class, extend, class> a class extends another class
<class, extended-by, class> a class is extended by another class
<class, implement, interface> a class implements an interface
<interface, implemented-by, class> an interface is implemented by a class
<method, declared-by, class, declare, method> two methods are co-declared by a class
<method, declared-by, class, use, field> (i.e., <method, co-locate, field>) a method and a field are co-declared by a class

4.3.2 Code Knowledge Graph

Figure 4.7 shows the schema we use to extract the knowledge graph from a code project.

Each node represents a type of program entity, and each edge represents a relation between

two program entity types. Each relation implies a tuple ⟨subject, relation, object⟩. The

overall meta-path schemas defined on the code knowledge graph are shown in Table 4.1.

For example, ⟨method1, call, method2⟩ indicates a call relation between two methods in

the code project. Moreover, for each relation type (e.g., call), we define its inverse-relation

67

CHAPTER 4. PROGRAM DOCUMENTATION

method

class interface

field

implement

declare
declare

extend

call

usereturn type

param
type

param type

return type

Figure 4.7: Schema for contextual knowledge graph.

type (e.g., called-by) on the graph. By this means, we can transform a whole project into

a code knowledge graph. Figure 4.8 shows an example of the partial knowledge graph.

The green nodes represent classes, the blue nodes represent methods, the yellow nodes

represent fields, and the edges with different colors represent different program relations.

The graph is centered at the target method and expands along the code relations defined in

Figure 4.7, such as declare, call, etc.

Formally, we have Gkg = ⟨N1, N2, ..., Nk, E1, E2, ..., El⟩ where each Ni represents

the set of nodes following a node type (e.g., method type) and each Em = Ni × Nj (i can

be equal to j) represents the set of edges following a relation type between two sets of

nodes (e.g., call relation type). Given a target method m (or a node of method type on the

code knowledge graph), we define its context as a set of reachable nodes in Gkg following

a predefined meta-path schema.

Contextual Meta-path Schema. Specifically, a contextual meta-path schema is a set

of sequences of node/edge types S = {MP|MP = ⟨Nt1, Et2, ..., Ntk⟩}. Note that each

Nti or Eti is a node type or edge type defined in Figure 4.7. We say a path on Gkg,

p = ⟨n1, e2, n3, ..., nk⟩, conforms to a meta-path schema MP = ⟨Nt1, Et2, Nt3, ..., Ntk⟩
if ∀i(i = 1, ..., k), ni is an instance of type Nti or ei is an instance of type Eti, denoted

as p ∼ MP . For example in Figure 4.8, the path p = ⟨ getMatchingCondition(),

call, isPreFlightRequest() ⟩ is an instance of the meta-path schema MP = ⟨
method, call, method ⟩.

Furthermore, we denote p[0] as the first element in p and p[−1] as the last element in

p. We define a path p = ⟨n1, e2, n3, ..., nk⟩ as a contextual path of a node n if p[0] = n

68

CHAPTER 4. PROGRAM DOCUMENTATION

getMatchingCondition()

RequestMethods
RequestCondition isPreFlightRequest()

ServerWebExchange CorsUtils

ServerHttpRequest

call

declare

parameter type

parameter type

matchRequestMethod()

declare

call

return type

declare

requestMethod
ConditionCache

declare

Figure 4.8: The code knowledge graph example for Figure 4.4.

and ∃MP ∈ S so that p ∼ MP . For example in Figure 4.8, taking the method

getMatchingCondition() as the target node, the path p = ⟨ getMatchingCon-
dition(), call, isPreFlightRequest() ⟩ is its contextual path because (1) p

starts at getMatchingCondition() and (2) p ∼ MP = ⟨ method, call, method ⟩.

Thus, we define the context of a node n as C(n) = {nc|∃MP ∈ S and p, p ∼
MP , p[0] = n, and p[−1] = nc}. For convenience, we use CMP(n) = {nc|p ∼
MP , p[0] = n, and p[−1] = nc} to denote the context of n under the meta-path schema

MP .

4.3.3 Context Sampling

There can be many contextual nodes of an anchor node, which makes it challenging

to feed all the contextual nodes into a training batch. Thus, we sample contextual nodes

regarding the context and embedding diversity during the training. Specifically, given the

set of contextual node C = {c1, c2, ..., cn}, for each ci ∈ C, we estimate its context and

embedding diversity.

We estimate its context diversity as Equation 4.1, where Typec(C) represents the set

of contextual types in C, and the function type(ci) returns the set of contextual nodes

sharing the same type with ci. As a result, divc(ci) represents the probability of sample ci

regarding the contextual diversity.

69

CHAPTER 4. PROGRAM DOCUMENTATION

Figure 4.9: Model training architecture of CProSum.

divc(ci) = 1
|Typec(C)| · 1

|type(ci)|
(4.1)

We estimate its embedding diversity as Equation 4.2. Given the embedding of the

target method as em, and that of the contextual node c as ec, Range(C, k) is the set of

k ranges evenly distributed between the L2 distance ||ec, em||. In addition, the function

range(ci) returns the contextual nodes sharing the same range with ci. As a result, dive(ci)
represents the probability of sample ci regarding the embedding diversity.

dive(ci) = 1
|Range(C, k)| · 1

|range(ci)|
(4.2)

Finally, we let the probability to sample ci by p(ci) = 1
2(divc(ci + dive(ci)). Note that,

it is guaranteed that
∑n

i=1 p(ci) = 1.

70

CHAPTER 4. PROGRAM DOCUMENTATION

4.3.4 Context Evaluation

Figure 4.9 shows our model training architecture, which includes one context evaluator

and one context-aware comment generator. StageA fixes the generator (in red) and trains

the evaluator (in green). For each context, the generator predicts the comment with

or without the context and calculates the score difference between the two predicted

comments. The context evaluator will score the context and use the gold score difference

to compute the loss. StageB fixes the evaluator and trains the generator. The evaluator

first scores each context and gives a ranked positive score list to select the useful context.

The generator will input the target code component and useful context list as a prompt and

predict the comment. The solid line passes the messages, and the dotted line computes the

loss. Stages A and B are alternated until the two models converge.

The context evaluator g is designed as a sentence transformer model to estimate

the potential of the performance boosting for a context to a target code. The input is

a codetar and a prompt sequence prompt including a list of typecon, codecon, graphcon)
where codetar is the target code, typecon is the context type, codecon is the context code,

and graphcon is the graph structure including project, package, class, caller, callee and

field information. We traverse the graph in fixed order into a sequence and train the

evaluator to learn the graph information using the target method. Compared to siamese

model architecture [33], this design is equipped with abundant attention neurons, which

allows models to capture more enriched and detailed relations between the context and

the target code. The output is a value normalized between 0 and 1, which indicates the

similarity score when concatenating with the selected context. The gold score depends on

the measurement method used in the code comment. In this work, we follow the previous

work [145][68] using the smoothing BLEU4 as the golden label for the evaluator. With a

trainable context evaluator g, a fixed comment generator F and a score calculator S, we

design the loss function as:

Losseval = |g(codetar, prompt)−

(S(F(codetar, prompt)) − S(F(codetar)))|
(4.3)

Equation 4.3 evaluates the difference between (1) the estimated boost potential and

(2) the actual score difference between the new predicted comment with prompt and the

original predicted comment without prompt by the comment generator.

71

CHAPTER 4. PROGRAM DOCUMENTATION

CodeBERT

Contextual Code

Entity1

Encoder/Embeeding
Layer

Contextual Attention Network

CodeBERT

Contextual Code

Entity2

... CodeBERT

Target Code

Entity

Primitive

Embedding1

Primitive

Embedding2

Primitive

Embedding

Transformer (decoder)

Comment

Decoder Layer

Contextual
Aggregation Layer

Output Layer

Input Layer ...

...

Contextual Embedding Primitive Embedding

Graph-based Contextual
Embedding

Target Code Embedding

Figure 4.10: A comment generator architecture.

4.3.5 Context Fusion

Figure 4.10 shows the architecture of the generator to fuse the target method and

its context, consisting of the input layer, embedding layer, encoder layer, contextual

aggregation layer, decoder layer, and output layer. The embedding layer has the alternative

solution as CodeBERT [57] or GraphCodeBERT [74]. The decoder layer has alternative

solutions such as GRU [36], LSTM [84], or Transformer [198]. We design the contextual

aggregation layer to discriminate and fuse relevant context with the target method. This

layer takes the primitive embedding ep from the encoder layer and all its contextual

node entities in the project as input and generates a contextual embedding ec as output.

The Contextual Attention Network is designed to guide the embedding layer (e.g., the

CodeBERT [57] or GraphCodeBERT [74] layer) to generate embedding of both the

contextual code entities and target method, so that the comment-contributable contextual

entities have close embedding with that of the target code. Then, we combine the generated

primitive and contextual embedding into e = ep ⊕ ec (or, e = p(ep, ec)) and feed e to the

decoder to derive the code comments. Practitioners can choose any encoder and decoder

solutions in practice.

72

CHAPTER 4. PROGRAM DOCUMENTATION

Graph-based Aggregation Given a target method m, based on the context definition

(see Section 4.3.2), we can have the set of context under different meta-path schemas, i.e.,

C = {CMP1(m), CMP2(m), ..., CMPk
(m)} (where k is the number of meta-path schemas).

In Figure 4.8, the method getMatchingCondition() has the following contexts:

• call: { ⟨getMatchingCondition(), call, isPreFlightRequest()⟩, ⟨get-
MatchingCondition(), call, matchRequestMethod()⟩ }

• co-location: { ⟨getMatchingCondition(), co-locate, matchRequestMethod()⟩
}

• return-type: { ⟨getMatchingCondition(), has-return-type, RequestMethods-

RequestCondition⟩ }

• param-type: { ⟨getMatchingCondition(), has-parameter-type, ServerWeb-

Exchange⟩ }

em =
∑

mi∈CMP (m)

gMP(em, emi
)

|CMP(m)| · emi
(4.4)

For each meta-path schema MP , we follow the intuition of PageRank algorithm

[158] to calculate its embedding aggregation as Equation 4.4. CMP(m) is the set of

neighbours under the context meta-path schema MP . For every neighbor emi
under MP ,

we learn its attention with the embedding of the target method m, i.e., gMP(em, emi
).

For example, let MP be the call context of the target method m = getMatchingCon-

dition(), CMP(m) = {isPreFlightRequest(), matchRequestMethod()}.

Therefore, |CMP(m)| = 2. For each neighbor in the call context, e.g., isPreFlight-

Request(), we denote its primitive embedding as em1 and that of the target method as

em. An attention function gMP(em, em1) is designed to represent how important isPre-

FlightRequest() can help to generate the comment of the target method. Then, we

multiply em1 the embedding of isPreFlightRequest() with gMP(em, em1) as the

contextual contribution of isPreFlightRequest(). By this means, we can learn a

discriminative model to distinguish more essential neighbors contributing to the target

method.

em =
∑

MP∈C

hMP(em)
|C|

·
∑

mi∈CMP (m)

gMP(em, emi
)

|CMP(m)| · emi
(4.5)

73

CHAPTER 4. PROGRAM DOCUMENTATION

Similarly, given many types of meta-path schema, we design Equation 4.5 to calculate

the aggregation. In addition to the attention between a neighbor and the target method

m, we also introduce an attention function to learn the importance of a context type (i.e.,

meta-path schema) to m, i.e., hMP(em). For example, the target method has context type

set C = {call, co-location, return-type, param-type}. For a context type, e.g., call, we learn

an attention function hMP(em) to evaluate how important a context type is to the target

method. By this means, we can also discriminate context types for every target method.

gMP(em, ei) = S(eT
i × WMP × em) (4.6)

hMP(em) = S(eT
m × W ′

MP) (4.7)

We use Equation 4.6 and Equation 4.7 for the two learnable attention functions gMP(.)
and hMP(.), respectively. In Equation 4.6, we use WMP ∈ Rd×d to learn the importance

of the contextual neighbor to the target method, and S(.) represents the sigmoid function.

In Equation 4.7, we use W ′
MP ∈ Rd×1 to learn the importance of a context type to the

target method. Note that, WMP and W ′
MP differ regarding different MP .

Overall, given the original embedding em and learned contextual embedding em, we

fuse the final embedding as Equation 4.8 where α and β are learnable parameters.

e′
m = α · em + β · em (4.8)

Here, e′
m is the representation encoding both the target method and its context information,

which is further fed to the decoder to generate the comment. Note that, despite that, we

consider only one-layer contextual neighbor in Equation 4.5; the primitive embedding will

be updated during the training, which allows the contextual information to propagate for

multiple hops.

4.4 Experiment
We have the following research questions for CProSum:

• RQ1 (Overall Performance): Whether CProSum has a better performance to generate

comments compared to the state-of-the-art comment generators?

74

CHAPTER 4. PROGRAM DOCUMENTATION

Table 4.2: Overview of the chosen baselines

Approach Input Representation Base Model
RoBERTa [127] Code token BERT[48]
CodeBERT [57] Code token RoBERTa
GraphCodeBERT [74] Code token + data flow RoBERTa
Code T5 [204] Code token T5[171]
UniXCoder [73] Code token XLM[105]
REDCODER [161] Code token + retrieval PLBART[2]
RAG [68] [145] Code token + retrieval GPT3.5[152]
GPT-4 Turbo [154] Code token GPT4

• RQ2 (Evaluator Performance): Whether the evaluator can score and select useful

code examples?

• RQ3 (Generator Performance): Whether comment generators can effectively utilize

the graph context of the target method and the retrieved code examples?

• RQ4 (Ablation Study): How does the performance of CProSum vary with project

information loss?

4.4.1 Experiment Setup

4.4.1.1 Baselines

In this study, we chose several baselines, including two retrieval-augmented methods,

two large language models (GPT), and five different architectures of language models

based on transformers. Both [68] and [145] use the CodeX[151] for the generator and

incorporate the retrieved examples with the code as prompts to the large language model.

However, as CodeX API is deprecated, we replace it with GPT3.5 Turbo[152]. Due to the

high cost, we randomly sampled 3K examples in our test dataset to test the GPT3.5 and

GPT4 models. Except for two GPT models, all other baselines have been fine-tuned on

our training dataset.

Those encoder-decoder solutions are selected because (1) they are shown to outperform

similar solutions and (2) they are popular and impactful (e.g., we choose CodeBERT

[57] and GraphCodeBERT [74] for their high impact), (3) they are diverse regarding

input structure and base model architecture. Table 4.2 shows more details of our selected

baselines. We use the default hyper-parameters suggested in the literature.

75

CHAPTER 4. PROGRAM DOCUMENTATION

4.4.1.2 Measurement

For context evaluator, we follow the existing literature [88, 57, 74] and use Mean

Average Precision (mAP), Mean Reciprocal Rank (MRR), Normalized Discounted Cumu-

lative Gain (NDCG) and R-precision (RPrec) to evaluate the performance of evaluator.

For comment generator, we follow the existing literature [7, 109, 3, 206, 89, 6, 25], and

use Smoothing BLEU4, METEOR, and ROUGE-L to evaluate the performance of code

summarization.

4.4.1.3 RQ1 Design (Overall Performance)

To answer RQ1, we train CProSum on top of CodeT5 and compare its performance

against the baselines. In this experiment, we split the training, valid, and test datasets by

projects to build the project-split dataset. All the models will be fine-tuned on 60 training

projects, validated on 10 projects, and tested on unseen 30 projects. For REDCODER, we

retrieve similar code from its own extra database extracted from GitHub and StackOverflow.

For RAG, we retrieve similar code from the training dataset. CProSum will include the

graph structural information and retrieved code examples from the code knowledge graph

that usually exists in real-world scenarios.

4.4.1.4 RQ2 Design (Evaluator Performance)

To test how well the evaluator can select useful context compared to traditional re-

trieved methods, we use the smoothing BLEU4 as the golden metric to rank the candidates

and regard the ranking as golden labels for the evaluators. We then compare the baseline

retriever with our evaluator on several metrics for selecting the most helpful code examples

for comment generation.

4.4.1.5 RQ3 Design (Generator Performance)

To test how well our graph structure of the target method will enhance the generator,

we equip all baselines with semantic-based retrieved information as prompts. CProSum

will include both the graph structural information and retrieved code examples from the

code knowledge graph.

Besides, to test how well the prompt mechanism can boost the generator’s performance

compared to the traditional fine-tuning method, we have a new dataset split setting

(function-split) where we add the context information of test samples to the training

76

CHAPTER 4. PROGRAM DOCUMENTATION

dataset. In detail, we split the dataset based on functions and randomly select 161K

(∼70%) code-comment pairs as the training set, 40K (∼20%) code-comment pairs as

the testing set, and the remaining for the validation. In a function-split dataset, the

traditional language model can be fine-tuned by the possible context of all the samples.

In this scenario, both retrieval methods and fine-tuning approaches can make use of the

contextual information present in the training dataset. RAG has been excluded from this

setting due to the non-public and high-cost nature of GPT-3.5.

4.4.1.6 RQ4 Design (Ablation Study)

As the effectiveness of the prompt mechanism has been widely accepted [125], we

design an ablation study mainly for the possibility of information loss. We choose the

project-split dataset and CodeT5 as the base comment generator. The setting will randomly

mask the node in the knowledge graph to simulate the situation when the code project is

incomplete. CProSum will try to include the most similar retrieved code examples from

the code knowledge graph, but we will set a threshold for similarity score as we do not

want to introduce much noise as context.

4.4.1.7 Training Configuration

We train the models on a GPU workstation with 4 GeForce RTX 2070 SUPER, Intel(R)

Core(TM) i9-10900X CPU @ 3.70GHz, and 64G memory.

4.4.2 Experiment Results

4.4.2.1 Results (RQ1): Overall Performance

Table 4.3 shows the performance of CProSum, comparing to the 8 baselines. Overall,

CProSum leads a non-trivial performance on all metrics BLEU4, METEOR, and ROUGE-

L. Generally, borrowing contextual information does not necessarily improve performance.

The retrieval-augmented approach REDCODER shows a great increase in performance,

but it remains a question whether the external database contains some unseen project

context as it crawls from GitHub and StackOverflow. In contrast, CProSum will utilize

the structural context in the code knowledge graph, such as class, callees, or part of

co-location methods that usually already exist when predicting the comment of the target

code. The relation between the structural context and the target code is more reasonable

77

CHAPTER 4. PROGRAM DOCUMENTATION

Table 4.3: Overall performance of different comment generators on the project-split
dataset. The last three LLMs are not fine tuned on the dataset due to high cost.

Comment Generator BLEU4 METEOR ROUGE-L
RoBERTa [127] 10.47 18.82 24.72
CodeBERT-base [57] 10.74 19.12 25.46
GraphCodeBERT [74] 10.67 18.38 24.72
UniCoder [73] 10.46 18.14 23.66
CodeT5-base [204] 12.92 21.51 26.13
REDCODER [161] 18.54 27.25 29.54
CProSum (Ours) 36.78 47.51 52.67
RAG-GPT3.5 [145] 9.31 28.62 28.27
GPT-4 turbo 9.57 25.48 14.41
GPT-4 + Our evaluator 18.84 31.70 16.61

and explainable than the relation between the retrieved similar code and the target code.

Finally, RAG-GPT3.5 using in [145] and [68] utilizing LLMs shows more boosting on

METEOR but less on BLEU4 score. Based on our observations, this phenomenon can be

attributed to LLMs’ tendency to generate detailed comments, which may lower precision

but enhance recall. However, our evaluator can select useful code examples to enhance

the performance of GPT4.

4.4.2.2 Results (RQ2): Evaluator Performance

Table 4.4: Overall performance of different selectors and evaluators on the dataset.

Setting MAP RPrec MRR NDCG Time(s)
RAG @1 36.51 28.65 36.51 40.22

0.013RAG @3 28.91 27.79 49.36 36.95
RAG @5 24.08 25.92 54.01 33.67
Graph @1 38.80 29.54 38.80 43.20

0.014Graph @3 32.17 30.57 53.26 41.19
Graph @5 27.61 29.48 58.31 38.17
CProSum @1 40.27 31.50 40.27 44.33

0.019CProSum @3 32.42 30.95 53.99 41.01
CProSum @5 27.11 28.82 58.72 37.33

Table 4.4 shows the performance of our evaluator and baseline’s selectors on the

dataset. Our Graph setting only contains the project, package, and class information of the

target method, and CProSum setting combines all the graph structures, including the caller,

callee, and field. We test them on three settings with only one golden example, the top 3

golden examples, and the top 5 golden examples based on the smoothing BLEU4 score

78

CHAPTER 4. PROGRAM DOCUMENTATION

of the target comment and similar code comment. The time for retrieval of each sample

is computed over the 220K dataset. Generally, our evaluator outperforms the baseline

and shows that our retrieved examples will contain more informative relations with the

target method. The Graph setting shows that only using simple project, package, and class

information in the code knowledge graph will enhance the model performance. Finally,

when the number of golden examples increases, our method will have better performance

compared to baselines as our graph representation will be less affected by code tokens and

select more structurally similar code.

4.4.2.3 Results (RQ3): Generator Performance

Table 4.5: Boosting Performance of CProSum’s comment evaluator with various comment
generators on project-split dataset

Model Scale Parameter BLEU4 METEOR ROUGE-L
Origin CProSum bst (%) Origin CProSum bst (%) Origin CProSum bst (%)

CodeBERT small 84M 25.12 33.23 32.29 34.02 43.42 27.63 40.09 49.31 23.00
CodeT5 60M 27.16 36.33 33.76 36.98 47.52 28.50 42.87 52.05 21.41
RoBERTa

base

173M 25.34 34.10 34.57 33.94 43.90 29.35 39.91 49.37 23.70
CodeBERT 173M 25.41 33.61 32.27 34.45 44.29 28.56 41.01 49.59 20.92
GraphCode 173M 25.44 33.35 31.09 34.66 44.54 28.51 40.64 49.99 23.01
CodeT5 223M 27.92 36.78 31.73 38.36 47.51 23.85 43.77 52.67 20.33
CodeT5 large 738M 30.44 36.89 21.19 41.76 47.88 14.66 45.04 52.49 16.54

Table 4.5 shows the generalizability of the boosting performance of CProSum for the

project-split samples. In general, the improvement is significant, which indicates that the

structural context incorporates abundant domain knowledge and templates that might be

largely missed by a comment generator only prompt with the semantic-retrieved code

comment. It shows that our proposed graph structure can effectively boost state-of-the-art

neural network models when the test project is not seen in the training procedure.

Table 4.6 shows the performance of CProSum with CodeT5-base as comment genera-

tor, comparing to the 8 baselines. Overall, CProSum leads a non-trivial performance on

all metrics, smoothing BLEU4, METEOR, and ROUGE-L. Traditional language models

such as CodeBERT achieve comparable performance to retrieval-augmented methods

like REDCODER. This is because the relevant context tends to be present in the training

dataset, allowing language models to utilize the memory in the fine-tuning stage on these

test examples. Further experiments on Table 4.7 where different comment generators are

trained with our graph structure and examples show that the structural information of the

target method can further boost the performance of different traditional transformer-based

comment generators. The result also shows CProSum model can explicitly evaluate the

79

CHAPTER 4. PROGRAM DOCUMENTATION

Table 4.6: The performance of comment generators on function-split dataset

Comment Genera-
tor

BLEU4 METEOR ROUGE-L

RoBERTa [127] 43.56 51.66 57.11
CodeBERT-base
[57]

44.71 52.59 57.63

GraphCodeBERT
[74]

44.74 53.07 58.16

UniCoder [73] 43.48 51.65 57.11
CodeT5-base[204] 45.17 54.70 58.63
REDCODER [161] 45.24 53.98 58.58
CProSum (Ours) 53.56 62.93 65.90

context type, code, comment and combine them to predict more concise and informative

comments.

Table 4.7: Boosting Performance of CProSum’s comment evaluator with various comment
generators on function-split dataset

Model+Retrieval Scale Parameter BLEU4 METEOR ROUGE-L
Origin CProSum bst (%) Origin CProSum bst (%) Origin CProSum bst (%)

CodeBERT small 84M 40.83 51.13 25.23 48.84 59.90 22.65 54.82 64.00 16.75
CodeT5 60M 36.35 48.54 33.54 45.96 58.17 26.57 51.74 62.11 20.04
RoBERTa

base

173M 43.56 52.21 19.86 51.66 60.49 17.09 57.11 64.58 13.08
CodeBERT 173M 44.71 52.74 17.96 52.59 61.07 16.12 57.63 65.09 12.94
GraphCode 173M 44.74 52.59 17.55 53.07 60.79 14.55 58.16 65.02 11.80
CodeT5 223M 45.53 53.56 17.64 54.19 62.93 16.13 58.48 65.90 12.69
CodeT5 large 738M 46.57 54.04 16.04 55.44 63.13 13.87 59.87 66.39 10.89

4.4.2.4 Results (RQ4): Ablation Study

Table 4.8 shows the results of our ablation study on the comment generator. Generally,

we can see that with more code nodes being masked, the comment generator’s performance

will decrease as it may find it hard to retrieve a similar example. Besides, when the node in

the code knowledge graph disappears, it will also influence the graph structure of the target

method, which will further hurt the performance of the comment generator. Experiments

show that 20% mask of nodes makes a small difference, while about half mask of all nodes

will greatly decrease the performance of our structural retrieval method. CProSum can

sometimes restrict itself from selecting any contextual entities if all the relevance scores

are evaluated to be low.

80

CHAPTER 4. PROGRAM DOCUMENTATION

Table 4.8: Ablation study on the information loss of code knowledge graph

Model BLEU4 METEOR ROUGE-L
CProSum 36.78 47.51 52.67
20% mask 35.89 47.01 51.22
40% mask 26.55 39.54 47.28
60% mask 19.45 31.20 40.25
80% mask 14.23 23.36 30.12
REDCODER 18.54 27.25 29.54
CodeT5 12.92 21.51 26.13

81

CHAPTER 5. PROGRAM EVOLUTION

Chapter 5

Program Evolution

5.1 Introduction
Language Models (LM) has achieved notable success in recent years in code generation

tasks. LM-based approaches, such as CodeBERT [57], GraphCodeBERT [74], CodeT5

[204], Copilot [70], and ChatGPT [154], have become predominant in the realm of code

generation, adeptly translating user descriptions and contextual code into executable code

snippets. Despite the prowess in generating new code, empirical studies suggest that

editing existing code is a more frequent activity among developers [107, 101, 143], with

edits comprising about 70% of commit activities in numerous open-source projects [147].

Several transformer-based methodologies have been developed to adapt code genera-

tion technologies to code editing tasks to address this. Notable examples include GRACE

[75], CCT5 [118], CoditT5 [226], and MODIT [29]. These approaches vary in how they

represent edits within deep learning models but commonly treat the code editing process

as a translation task. This involves (1) accepting inputs of known relevant prior edits

(along with their contexts) and specific code regions (with their contexts) where changes

are anticipated and (2) generating the edited code as output. We show a model architecture

presented in Figure 5.1 to showcase a typical state-of-the-art solution where optional edit

descriptions, prior edits with their contexts, and the targeted code regions are processed

by a language model to produce the edited code. This representation encapsulates the

contemporary approach to integrating deep learning techniques into practical code editing

applications.

While the solutions above have established a crucial foundation for code editing tasks,

82

CHAPTER 5. PROGRAM EVOLUTION

Prior Edit Prior EditContext Context Code To EditContext…

Transformer (with Encoder and Decoder)

Edited Code

Description

Assumption 1: Known
Relevant Prior Edit

Assumption 2: Known
Subsequent Edit Location

Figure 5.1: The Code Editing Framework in [29] [75] [112].

they still fail to mirror the complexities encountered in real-world scenarios. Several

assumptions prevalent in current models may not hold in practice, leading to gaps in

effectiveness:

• Relevance of Prior Edits. Traditional models often presume that all prior edits related

to a target edit are relevant. This assumption might not always be valid in actual

development environments. Feeding models with irrelevant prior edits can introduce

noise, thereby degrading the accuracy of the proposed modifications.

• The Next Edit Location. Identifying potential locations for subsequent edits is chal-

lenging due to the ripple effects that a single change can trigger across a project [195].

This dynamic makes it difficult to predict where edits will be necessary without a

comprehensive understanding of the entire codebase.

• Interaction and Connection between Different Edits. Code edits often interact with one

another, influencing each other through syntactic dependencies and semantic relation-

ships. Current transformer-based models, however, generally lack the sophisticated

design required to capture and interpret these complex interactions effectively.

Addressing these issues requires enhancing current models to reflect the nuanced

dynamics of software development better, thereby improving the practical utility of

automated code editing tools. We introduce CoEdPilot, an LM-based solution crafted

to tackle the outlined challenges in code editing. CoEdPilot is meticulously designed

to monitor the ripple effects of edits, accurately infer the relevance of prior edits, and

explicitly capture interactions between edits. Our approach integrates a suite of neural

transformers [198] to function cohesively.

83

CHAPTER 5. PROGRAM EVOLUTION

Upon the occurrence of an edit-triggering event (e.g., an edit e complemented by an

optional edit description prp), CoEdPilot activates its components sequentially:

• Two-stage edit location: Initially, an Edit-propagating File Locator scans the entire

project to identify a coarse-grained set of files, F , where changes are likely to occur.

Using the identified files F , a Edit-propagating Line Locator applies a sliding window

approach to determine the edit type for each line of code within these files. The result

is a set of labeled lines of code, Le = le = (l, t) | l ∈ L, t ∈ insert, replace, where L
denotes the set of all code lines in the project. Le encompasses all lines that need to be

updated with new code lines.

• Edit Code Generation: For each identified edit location Le, the Edit-content Generator

generates the corresponding edit content et = (l, t) using the editing description prp and

a curated set of relevant prior edits. The prior edits P = {e = (l, t, ca, cb)} are selected

to provide context, where l denotes the line of code being modified, t specifies the edit

type, ca is the updated code content, and cb is the original code content. Feedback on

ca and cb is dynamically incorporated to iteratively adjust the generated edit content,

ensuring alignment with the user’s requirements and preferences during the editing

session.

• Edit dependency analysis: The Edit-dependency Analyzer examines prior edits to

identify those most relevant to the current task, ensuring both syntactic and semantic

alignment. By filtering for edits that are contextually appropriate, this component

improves the accuracy and relevance of the generated edits.

We trained our neural models on a dataset of over 180,000 commits crawled from 471

open-source projects. Our experiments yielded the following findings:

CoEdPilot identifies edit locations with an accuracy ranging from 70.8% to 85.3%.

For each identified edit location, CoEdPilot achieves a top-1 exact match rate of 41.8%

and a BLEU score of 60.7. Furthermore, an ablation study demonstrated that CoEdPilot

improves the performance of baselines by an average of 8.57% in exact match rate and

18.08 in BLEU score. In a user study involving 18 participants tasked with three types of

editing activities—feature enhancement, refactoring, and bug fixing—the results showed:

84

CHAPTER 5. PROGRAM EVOLUTION

Table 5.1: The illustration of code edits in the file src/testing/benchmark.go
Hunk Before Edit After Edit
H1 (in-
sert)

type benchContext struct {

maxLen int // The
largest recorded
benchmark name.

}

type benchContext struct {
match *matcher

maxLen int // The
largest recorded
benchmark name.

}

H2 (in-
sert)

func runBenchmarksInternal
(...) bool {

// ... other code ...
ctx := &benchContext{

extLen: len(
benchmarkName("",
maxprocs)),

}
// ... other code ...

}

func runBenchmarksInternal
(...) bool {

// ... other code ...
ctx := &benchContext{
match: newMatcher(
matchString, *
matchBenchmarks, "-test
.bench"),
extLen: len(
benchmarkName("",
maxprocs)),

}
// ... other code ...

}

H3 (re-
place)

func (b *B) runBench(...)
bool {

// ... other code ...
if b.level > 0 {

name = b.name + "/" +
name

}
// ... other code ...

}

func (b *B) runBench(...)
bool {

// ... other code ...
benchName, ok := b.name,

true
if b.context != nil {
benchName, ok = b.
context.match.fullName
(&b.common, name)

}
if !ok {
return true

}
// ... other code ...

}

Compared to the baseline Copilot, CoEdPilot effectively supports users by leveraging

project-wide awareness and capturing the interaction dynamics between relevant edits.

Our key contributions are summarized as follows:

• We present CoEdPilot, a framework designed to improve edit generation models by

anticipating related prior edits, pinpointing future edit locations, and modeling the

interactive relationships between edits.

85

CHAPTER 5. PROGRAM EVOLUTION

Table 5.2: The illustration of code edits in the file src/testing/testing.go
Hunk Before Edit After Edit
H4 (in-
sert)

type testContext struct {

mu sync.Mutex
// ... other code ...

}

type testContext struct {
match *matcher

mu sync.Mutex
// ... other code ...

}

H5 (re-
place)

func (t *T) run(...) bool
{

testName := name
if t.level > 0 {

testName = t.name +
"/" + name

}
// ... other code ...

}

func (t *T) run(...) bool
{

testName, ok := t.
context.match.fullName
(&t.common, name)

if !ok {
return true

}
// ... other code ...

}

H6 (re-
place)

func newTestContext(
maxParallel int) *
testContext {

return &testContext{

startParallel: make(
chan bool),
maxParallel:
maxParallel,
running: 1, //
Set the count to 1 for
the main (sequential)
test.

}
}

func newTestContext(
maxParallel int, m *
matcher) *testContext {

return &testContext{
match: m,
startParallel: make(
chan bool),
maxParallel:
maxParallel,
running: 1, //
Set the count to 1 for
the main (sequential)
test.

}
}

• CoEdPilot is designed as a modular framework, enabling seamless integration with any

edit-content generator within the community.

• We developed CoEdPilot as a VS Code plugin leveraging cloud infrastructure, providing

programmers with a practical tool for experimentation.

• We conducted comprehensive evaluations, including simulations, model-wise analysis,

and a user study, demonstrating the effectiveness of individual model components, their

integration as a system, and the UI design in a real-world tool.

86

CHAPTER 5. PROGRAM EVOLUTION

5.2 Overview
Table 5.1 and Table 5.2 showcase a simplified code-editing example from commit

00a2. Below, we provide a comprehensive summary of the programmer’s editing inten-

tions for this commit:

Intuition Design. The modified function is responsible for selecting test cases and

benchmarks in the golang/go project. This project features the testing package,

which orchestrates test case execution and evaluates benchmarks to measure runtime

performance, memory allocation, and locking efficiency in Go programs.

The file src/testing/testing.go automates the selection of specific test cases,

while src/testing/benchmark.go handles benchmarks. In the previous imple-

mentation, the selection process relied on keyword-based matching. Specifically, test and

benchmark names were matched against a string (as illustrated in the Before Edit sections

of H3 in Table 5.1 and H5 in Table 5.2).

Editing Intent. The programmer aimed to improve flexibility and precision in test

and benchmark selection by implementing a regular-expression-based matching system.

This new approach replaces the earlier keyword-based system, enabling more accurate

identification of relevant test cases and benchmarks.

Editing Implementation. To achieve this goal, the following changes were made to

benchmark.go and testing.go:

• H1 (Table 5.1): Introduced a pointer variable matcher in the type benchContext.

• H2 (Table 5.1): Added a matcher parameter during the initialization of a benchContext

instance.

• H3 (Table 5.1): Replaced the keyword-based matching logic with regular-expression-

based matching.

• H4 (Table 5.2): Introduced a pointer variable matcher in the type testContext.

• H5 (Table 5.2): Substituted the keyword-based matching logic with a regular-expression-

based approach.

• H6 (Table 5.2): Added a matcher parameter during the initialization of a testContext

instance.

87

CHAPTER 5. PROGRAM EVOLUTION

H1

H2

src/testing/benchmark.go

H3

H4

H5

H6

src/testing/testing.go

syntactic
propagation

logical
propagation

semantic
propagation

semantic
propagation syntactic

propagation

logic
propagation

Figure 5.2: Illustration of Edit Propagation for the examples in Table 5.1 and Table 5.2.

Although these edits are relatively simple, they are interconnected and demonstrate

different types of edit propagation, as shown in Figure 5.2. Following the notation in

Table 5.1 and Table 5.2, we denote hunks as Hi (i = 1, . . . , 6).

Types of Edit Propagation. Below are the observed categories of edit propagation in this

example:

• Syntactic Propagation: This occurs when an edit ei introduces a syntax-related de-

pendency, requiring a follow-up edit ej to resolve a compilation error. For instance,

in Figure 5.2, an edit in H1 leads to a compilation error in H2 due to an uninitialized

parameter. This highlights the mutual dependency between syntax-related changes.

• Semantic Propagation: Semantic propagation reflects edits ei and ej being applied

to related functionalities. This relationship propagates changes across similar sections

of the codebase. For example, in Figure 5.2, edits like (H1, H4) and (H3, H5) exhibit

semantic propagation.

• Logical Propagation: Logical propagation indicates that an edit ei serves as a prerequi-

site for another edit ej . In Figure 5.2, H1 introduces the matcher variable, enabling

the matching logic to be enhanced in H3, even though H1 does not directly cause an

issue at H3.

From these observations, it is evident that:

• Edits interact in diverse ways, each influencing the project differently.

88

CHAPTER 5. PROGRAM EVOLUTION

Project

Prior Edits & User
Editing Prompt

Edit-
propagating
File Locator

Edit-
dependency

Analyzer

Relevant
Source File

Edit-
propagating
Line Locator

Editing
Locations

Relevant
Prior Edits

Edit-content
Generator

Edit
Options

Subsequent Edit Analysis

Prior Edit Analysis Edit Generation

Figure 5.3: CoEdPilot includes prior edit retrieval, subsequent edit analysis, and edit
generation.

• Only a select number of prior edits are relevant and sufficiently informative to contribute

effectively to subsequent edits.

• Edits have the potential to propagate across any files within the project, underscoring

the broad scope of their impact.

While state-of-the-art solutions like MODIT [29], and CoditT5 [226] have made significant

advancements and established a solid foundation (see their model architectures summa-

rized in Figure 5.1), they still fall short of effectively addressing the edit recommendation

challenges encountered in real-world practice.

5.3 Approach
Figure 5.3 shows the framework of CoEdPilot. The CoEdPilot architecture is designed

to facilitate code editing by analyzing and generating code edits based on a set of prior

modifications and an optional edit prompt. The output is generated as a list of potential

editing locations along with their corresponding edit options. The architecture comprises

three main components:

• Subsequent Edit Analysis This component processes a set of selected prior code edits

along with an optional editing prompt to estimate future edits within the project. The

89

CHAPTER 5. PROGRAM EVOLUTION

analysis is conducted in two stages. The first stage utilizes Edit-propagating File Locator

to identify the relevant source files where edits may occur, providing a coarse-grained

overview. The second stage employs a fine-grained detector, Edit-propagating Line

Locator, to predict the type of edits (e.g., insertions or replacements) needed for each

line in these files.

• Prior Edit Analysis This module analyzes the identified editing locations to select the

most relevant previous edits using Edit-dependency Analyzer. It evaluates these edits

based on their ability to influence future edits in terms of syntax, semantics, and logic.

• Edit Generation This component generates concrete editing options for each identified

location, specifically for edits classified as insert or replace. The process includes user

interaction where: (1) The user can accept a recommended edit as is. (2) The user may

modify a suggested edit based on the recommendation. (3) The user inputs their own

edit if the recommendations do not suffice. Once an edit is confirmed, it is recorded as a

new prior edit, which triggers a new cycle of edit generation and recommendations.

This structured approach allows for dynamic and iterative enhancements to code, leverag-

ing both past edits and real-time user input to refine and optimize code continuously.

5.3.1 Subsequent Edit Analysis

Problem Statement. We tackle the challenge of identifying subsequent edits in a software

project by framing it as a task of edit propagation triggered by an initial edit and an

optional user prompt.

The problem is defined as follows: Given a project P , represented as a set of files,

a user’s editing prompt prp, and the latest edit e = (cb, ca), where cb denotes the code

before the edit and ca represents the code after the edit, our goal is to identify a subset of

files F ⊂ P . For each file f ∈ F , subsequent edits are specified by annotating each line

of code with an editing type: keep, insert, or replace.

Challenge. As discussed earlier, the interactions between edits involve complex syntactic

dependencies and semantic relevancies. To analyze these syntactic dependencies, it is

standard practice to parse the entire compilable project. This process involves constructing

a program dependency graph [59], which helps in tracking data, control, and call dependen-

90

CHAPTER 5. PROGRAM EVOLUTION

cies. However, constructing such graphs for large projects can be notably time-consuming

and computationally intensive.

Moreover, the tools used for constructing syntactic graphs [197, 5] and analyzing se-

mantic relevance [100, 53, 4] typically depend on the programming language, which limits

their versatility. To overcome these challenges, we employ neural models that estimate

both syntactic dependencies and semantic relevances. These models offer advantages in

terms of runtime efficiency and language independence, providing a more scalable and

flexible approach to understanding the interactions between code edits.

In this study, we implement a two-tiered approach to localization, designed to pinpoint

the areas requiring edits within a codebase efficiently. The first stage involves file localiza-

tion, which is performed in a coarse-grained manner. Following this, we refine our focus

in the second stage with line of code localization. This fine-grained analysis precisely

determines the specific lines within the identified files that need editing. This methodical

approach ensures a systematic and accurate identification of edit locations, enhancing the

effectiveness of subsequent code modifications.

5.3.1.1 Propagation File Localization

To achieve this, we select a subset F ′ ⊂ F , where F ′ = {f | subedt(f, e) > thsub, f ∈
F}. Here, subedt(·, ·) denotes a likelihood estimation function for determining the proba-

bility that a file f will be co-edited given the input edit e. The threshold thsub is used to

quantify this likelihood.

The propagation likelihood is evaluated based on two primary factors: (1) the estimated

dependency of the file f on the input edit e; and (2) the semantic similarity between code

fragments in f and the edit e.

Namely, we design Equation 5.1 as follows.

subedt(f, e) = α1 · dep(e, f) + α2 · sem(e, f) + ϵ (5.1)

In Equation 5.1, we let each coefficient αi > 0. We quantize each factor (estimated

dependency dep(e, f) and semantic similarity sem(e, f)) as a score between 0 and 1 as

follows.

Estimated Dependency To determine whether a source file f is influenced by a given

edit e = (cb, ca), we design a dependency inference function dep(e, f) that quantifies the

91

CHAPTER 5. PROGRAM EVOLUTION

Figure 5.4: Illustration of the transformer-based model to learn the dependency of the
code edits.

likelihood of such a dependency. This function leverages transformer-based models, such

as CodeT5 and CodeBERT, to capture relationships within the source code. The design of

our approach is guided by the framework proposed in GRACE [75].

In our approach, we utilize the tags <from> and <to> as separators between two

segments of source code, serving a crucial role in instruction tuning. These tags help

delineate the beginning and end of code snippets, facilitating clearer parsing and processing

by our model. Following this segmentation, we introduce a dense neural layer equipped

with two output neurons. These neurons are activated using a sigmoid function designed

to assess code dependencies in both directions:

1. Determining whether the former code snippet depends on the latter, and

2. Assessing if the latter code snippet depends on the former.

Given a pair of source code c1, c2, their labeled dependencies are y1 and y2 (y1 = 1 or

0 indicates whether c1 depends on c2, and y2 = 1 or 0 indicates whether c2 depends on

c1), and their estimated dependencies are ŷ1 and ŷ2. We design the loss function as shown

in Equation 5.2:

loss(c1, c2) = −(y1 × log(ŷ1) + (1 − y1) × log(1 − ŷ1)+

y2 × log(ŷ2) + (1 − y2) × log(1 − ŷ2))
(5.2)

We leverage the dependency analyzer developed by Jin et al. [95, 96] to construct

our training dataset. Due to input length constraints, a file f is divided into k smaller

segments, denoted as seg1, . . . , segk. The code before the most recent edit, cb, is selected

as the target code ctar. We then estimate the likelihood of a dependency between ctar and

each segment.

92

CHAPTER 5. PROGRAM EVOLUTION

The second output neuron, ŷ2, represents the likelihood of the latter code depending

on the former. We define the dependency function as:

dep(e, f) = max(ŷ2(ctar, segi)).

This formulation uses a one-directional dependency to infer edit propagation. The max(·)
function is chosen to prioritize recall over precision at this stage. By substituting the

dependency analyzer tool [95, 96] with a neural network, we significantly reduce the

runtime required for analyzing a pair of code snippets, decreasing it from approximately

70 seconds to 0.01 seconds.

Semantic Similarity and Prompt Relevance We leverage neural embeddings to uni-

versally capture the semantic similarity between different pieces of source code. The

underlying rationale is our belief that pretrained neural networks, such as CodeT5 and

CodeBERT, are adept at capturing both syntactic and semantic similarities. Given these

models’ capabilities, we continue to factor in the constraints posed by the maximum input

length permissible by transformer architectures. This consideration ensures that while we

utilize these models’ advanced capabilities to analyze code, we also efficiently manage

the data input to fit within the operational parameters of the neural networks, thereby

maximizing the effectiveness and accuracy of our semantic similarity assessments. We

split a source file f into k segments as seg1, ..., segk, ctar = cb where cb is the code before

the edit, and emd(.) as the representation of a piece of code or a prompt extracted from

the transformer, we can have:

sem(e, f) = max(cos(emd(ctar), emd(segi))) (5.3)

5.3.1.2 Propagation Line Localization

Given the identified source files that exhibit potential for edit propagation, we imple-

ment a sliding window technique across each file to systematically analyze the editing

requirements for each line of source code. This method involves sequentially moving

a window across the file’s text, allowing us to scrutinize every line individually. By

doing so, we can precisely categorize the type of edits needed—whether a line should be

kept, inserted, or replaced. As illustrated in Figure 5.5, we fine-tune a base transformer

model to solve a Masked Language Modeling task [48], incorporating instruction tuning

93

CHAPTER 5. PROGRAM EVOLUTION

techniques [179]. The transformer’s input is composed of three main components: the

target code within the window, the user-provided prompt, and the relevant prior edits (see

Section 5.3.2 for details). To guide the model in understanding the structure of the input,

we include specific instruction tags such as code-window, prompt, prior-edits,

and edit as separators.

Additionally, each line of code is annotated with an operator that specifies its intended

action:

• keep: This operator indicates that the line should remain unchanged, represented by

<K>.

• insert: This operator signifies that new code should be inserted after the current line,

represented by <I>.

• replace: This operator denotes that the line should be replaced, either with an empty

line (deletion) or with modified content (update), represented by <R>.

In our approach, the edit operators are represented in the input using a special token,

<MASK>. To train the model to identify and replace these masked tokens accurately, we

engage in a Masked Language Modeling (MLM) task specifically focused on the edit

operators. The training prompts for this task are derived from commit messages found in

the code’s commit history, providing contextually rich cues for learning.

5.3.2 Prior Edit Analysis

Problem Statement. Given a set of prior edits Ep = {ep1 , . . . , epk
}, where each ei =

(cbi
, cai

), and a target code cbtar , we measure the likelihood of influence of epi
on cbtar

as a value between 0 and 1. To achieve this, we define an estimation function rel(., .) :
Ep × C → (0, 1), where C represents the set of code fragments, and rel(ei, cbtar) ∈ (0, 1)
quantifies the degree of relevance.

We quantize the relevance of prior edits by their syntactic dependency and semantic

similarity by Equation 5.4:

rel(epi
, cbtar) = FCN(dep(epi

, cbtar), sem(epi
, cbtar),

locsim(epi
, cbtar))

(5.4)

94

CHAPTER 5. PROGRAM EVOLUTION

M

Transformer

prompt prior editsLoC M LoC …

R K …

<code-window>
<MASK> func newTestContext(…) *testContext {
<MASK> return &testContext{
<MASK> startParallel: make(chan bool),
…
</code-window>

<prompt>
introduce a regular expr …
</prompt>

<prior-edits>
<edit>
<D> testName := name
<A> testName, ok := t.context.match …
</edit>
<edit>
…
</edit>
…
</prior-edits>

Figure 5.5: Architecture of the Edit Location Prediction.

Further, in Equation 5.4, FCN is a multi-layer fully connected network, the de-

pendency estimation function dep(., .) for estimating the dependency from cctar to the

code before the edit of epi
and the semantic relevance function sem(., .) is defined in

Section 5.3.1.1. Function locsim evaluates the proximity between epi
and cbtar as:

locsim(epi
, cbtar) =

1 − |loc(epi)−loc(cbtar

)|
k

if ld(epi
, cbtar) < k

0 otherwise
(5.5)

In Equation 5.5, we use a sliding window of size k to define whether the location difference

of epi
and cbtar is small (i.e., ld(epi

, cbtar) < k). If it is, we estimate the proximity as

Equation 5.5. Otherwise, the function locsim(., .) is 0. Finally, we define a threshold thpri

to identify the set of relevant prior edits Erel = {ep|rel(ep, cbtar) > thpri}.

5.3.3 Edit Generation

Figure 5.6 depicts the model architecture for generating edit content at a single edit

location, utilizing selected prior edits. Like the approach used for locating edit lines, the

edit generation model processes three key inputs: a code window surrounding the edit, the

user’s prompt, and relevant prior edits. To enhance structural understanding, the prompt

95

CHAPTER 5. PROGRAM EVOLUTION

I/R

Transformer

prompt prior editsLoC

<code-window>
…
<K> ctx := &benchContext{
<I> extLen: len(benchmarkName("", maxprocs)),
<K> }
…
</code-window>

<prompt>
introduce a regular expr …
</prompt>

<prior-edits>
<edit>
<D> testName := name
<A> testName, ok := t.context.match …
</edit>
<edit>
…
</edit>
…
</prior-edits>

Generated Edit Content

K LoC K LoC

Figure 5.6: Architecture of Our Edit Generator.

and prior edits are tagged consistently to highlight key elements.

Unlike other inputs, the code window represents a hunk, which includes consecutive

lines of the same edit type (replace or insert) along with a few surrounding lines of the

keep type as contextual information. The types of edition are:

• Lines of type keep are tagged with <K>.

• Lines of type insert are tagged with <I>.

• Lines of type replace are tagged with <R>.

The model predicts the edit content for the specified edit location as output. Training is

conducted using the classical cross-entropy loss [41].

At runtime, we employ Beam Search [64] to generate k ranked edit options based on

their confidence scores. Lastly, users can either accept or modify the suggested edits. Any

new edit provided by the user is stored as a prior edit, serving as feedback to enhance the

subsequent editing process.

96

CHAPTER 5. PROGRAM EVOLUTION

Figure 5.7: We implemented CoEdPilot as a Visual Studio Code extension.

5.3.4 Model Training

Overall, we trained three neural models, i.e., an Edit-dependency Analyzer (see Sec-

tion 5.3.1.1), an Edit-propagating Line Locator (see Section 5.3.1.2), and an Edit-content

Generator (see Section 5.3.3).

We initiate the training of our Edit-dependency Analyzer by leveraging the dependency

analysis tool developed by Jin et al. [95, 96], applied across various open-source projects.

This tool assists in gathering data on the dependencies inherent within source code,

forming the foundational dataset for training. Importantly, our neural dependency analyzer

is designed to predict code dependencies irrespective of programming language, enhancing

its versatility and applicability. Subsequently, we conduct interactive training for the Edit-

propagating Line Locator and Edit-content Generator. Our training dataset comprises

commits from open-source projects. Each commit is broken down into individual edits, or

hunks, which we use to train our models. This training involves estimating the edits in a

randomized sequence, both within and across files. Additionally, when dealing with a set

of prior edits, we transform their relevance into a probabilistic distribution X .

5.4 Tool Design
Figure 5.7 presents a screenshot of our CoEdPilot tool, integrated as an extension for

Visual Studio Code, showcasing functions developed according to our proposed approach.

97

CHAPTER 5. PROGRAM EVOLUTION

The key features and graphical user interface (GUI) are described as follows:

• Triggering the Edit Recommendation: Users can activate the edit recommendation

feature within the CoEdPilot tool through a keyboard shortcut or by right-clicking in

the editor. This action opens an Edit Description Input ①, allowing users to provide an

optional description of the desired edit.

• Subsequent Edit Recommendation: Afterward, CoEdPilot displays an Edit Location

View ②, where edit locations are organized hierarchically, with edit files as parent

nodes and corresponding edit lines as child nodes. Users can interact directly with the

visualization by selecting a child node. Lines marked for insertion are highlighted in

green to indicate additions, while lines suggested for replacement are highlighted in red

to indicate modifications.

• Edit Option Recommendation: Users can request detailed edit options for each

location, displayed in the Editable Difference View ③ in Figure 5.7. This view simulates

how the code appears before and after the edit. Using the Edit Operation Button ④, users

can browse, accept, or ignore the edit options. Accepted edits, along with any subsequent

modifications, are recorded as prior edits to improve future recommendations.

• Cloud Service: For deployment, the CoEdPilot tool adopts a cloud-based design, similar

to Copilot, to manage interactions between the client and server. Users can monitor the

network connection status through the Query State ⑤, as shown in Figure 5.7.

5.5 Experiment

5.5.1 Research Questions

We have five research questions:

• RQ1 (Locating Propagating Files): Can CoEdPilot accurately identify the source files

where edits propagate?

• RQ2 (Locating Propagating Lines): Given the identified source files, can CoEdPilot

locate the specific lines of code affected by edit propagation?

98

CHAPTER 5. PROGRAM EVOLUTION

• RQ3 (Edit Generation): How effectively can CoEdPilot generate edit options for a

given edit location?

• RQ4 (Prior Edit Relevance): Can CoEdPilot accurately select relevant prior edits to

assist in the editing process?

• RQ5 (Performance Boost for State-of-the-art Solutions): Does the CoEdPilot frame-

work enhance the performance of state-of-the-art edit generation models?

5.5.2 Benchmark Construction

To assess the performance of CoEdPilot, we established a comprehensive benchmark

comprising five programming languages (i.e., JavaScript, Java, Go, Python, and Type-

Script) sourced from 471 open-source projects. For our dataset, we selected projects

based on popularity, specifically choosing the top 100 projects on GitHub by star count.

We excluded projects primarily intended for educational purposes, such as tutorials, and

those with non-English commit messages for each programming language. Our selection

criteria for commits within these projects are designed to optimize the relevance and

manageability of the data for our model. These criteria include:

• Each commit must contain at least three hunks;

• Each commit must include hunks where the number of changed lines is fewer than 15,

in alignment with our model’s input length limitations;

• Commit messages must be in English and contain more than five tokens to ensure

sufficient descriptiveness;

• Commits should not include automatically generated source files (e.g., Java files marked

with @auto) or non-source files such as .bak, .log, and .pyc files.

As detailed in Table 5.3, these stringent selection criteria resulted in an average commit

filter rate of 6.89%. We then trained our dependency analyzer on a subset of 49 projects

representing various programming languages. This training involved 77,000 positive pairs

and 24,000 randomly sampled negative pairs, ensuring a robust dataset for developing an

effective analyzer.

99

CHAPTER 5. PROGRAM EVOLUTION

Table 5.3: Benchmark of CoEdPilot including 471 projects with five programming lan-
guages.

Language Model Train Valid Test #Proj #Com #File #Hunk

JavaScript
File location 22K 3K 6K

93 34K 34K 658KLine location 382K 54K 109K
Edit generation 460K 65K 130K

Java
File location 68K 10K 20K

89 24K 72K 556KLine location 335K 47K 95K
Edit generation 389K 55K 111K

Go
File location 46K 7K 14K

98 50K 88K 1174KLine location 695K 99K 198K
Edit generation 822K 117K 234K

Python
File location 60K 9K 17K

91 33K 42K 555KLine location 327K 46K 93K
edit generation 389K 55K 111K

TypeScript
File location 65K 9K 17K

100 39K 76K 817KLine location 480K 68K 137K
Edit generation 572K 81K 163K

5.5.3 Experiment Setup

5.5.3.1 RQ1 (Propagating-file Location)

We construct our training samples by extracting commits that consist of k hunks,

collectively referred to as a set H , dispersed across m source files. For each training

sample, we designate one hunk, h ∈ H , as the target hunk. The files containing the

remaining hunks are considered ground-truth positive files, numbered as m′. To assess

the robustness of our model, we also select n files (where n > m) that are not part of

the commit, labeling these as harmful files to introduce potential false positives into the

training data. The effectiveness of CoEdPilot in identifying relevant files is evaluated

through its precision and recall metrics. If CoEdPilot reports g files as positive and h out

of g files are truly positive, we measure the precision of file location as h
g

and the recall of

the file location as h
m

.

5.5.3.2 RQ2 (Propagating-line Location)

We structure our training and evaluation process by parsing a commit consisting of k

hunks, collectively labeled as H , dispersed across m files. This setup allows us to generate

k distinct training samples by employing the following procedure iteratively:

• In each iteration, we select one hunk, h ∈ H , to serve as the target edit to be

100

CHAPTER 5. PROGRAM EVOLUTION

predicted.

• We identify relevant prior edits using H \ h with CoEdPilot.

• We apply a sliding window of size s across the m files enabling CoEdPilot to

identify the target hunk h.

• This process is repeated k times, each time selecting a different hunk from H as the

target edit.

5.5.3.3 RQ3 (Edit Generation)

Given a commit with a set of hunks H , one hunk h is selected as the target edit. The

remaining hunks form the set of prior edits, defined as H ′ = H \ {h}. We use beam

search to generate the top-1, top-3, top-5, and top-10 edit options for each edit location.

For evaluation, we measure performance using:

1. Exact Match Rate (EMR): This metric evaluates the accuracy of the entire commit

(i.e., the edit session). If the generated edit content matches the ground truth edit in m

out of k cases, the EMR is calculated as m
k

.

2. BLEU4 Score: Following [159], we compute the BLEU4 score of the generated edit

content. Specifically, we determine the highest BLEU4 score across all k predictions

for each configuration.

5.5.3.4 RQ4 (Prior Edit Prediction)

We evaluate the impact of using selective prior edits (identified by our Edit-dependency

Analyzer) versus random prior edits in training the edit locating models and the edit

generation models. The performance is compared based on the metrics outlined in

Section 5.5.3.2 and Section 5.5.3.3.

5.5.3.5 RQ5 (Performance Boost)

The experiment is designed to evaluate the performance boost provided by CoEdPilot

when integrated with state-of-the-art solutions. We select GRACE [75], CCT5 [118], and

CoditT5 [226] as baselines to observe the enhancement effect of CoEdPilot. CoPilot [70]

is excluded from the comparison due to the unavailability of its programming API at the

time of this study.

101

CHAPTER 5. PROGRAM EVOLUTION

• Rough Edit Location: We provide the baseline models with rough edit locations,

represented as general hunk areas, to evaluate their performance in generating edits.

• Precise Edit Location: We integrate the baseline models with our edit location model,

supplying them with specific line-level edit locations, to assess their performance under

more precise guidance.

5.5.4 Experiment Results

5.5.4.1 RQ1 and RQ2 (Propagating-file Location & Line)

Table 5.4 summarizes the performance of CoEdPilot in detecting edit locations at

different granularities (i.e., file-level and line-level). At the file level, the tool achieves an

average precision of 79.52% and a recall of 72.93%. For line-level detection, it attains an

average precision of 86.97% and a recall of 84.82%. The effectiveness of CoEdPilot is

exemplified in identifying specific edit patterns, such as those seen in the commit 4bf1c

in Golang/Go project. Additionally, the average runtime overhead for inferring edits in a

file is recorded at 1.6 seconds, demonstrating the tool’s operational efficiency.

Challenges and Future Directions We discuss and explore all the commits and sum-

marize the reasons for wrong prediction samples as follows:

Reason 1: Noisy Samples in the Training Dataset. Despite rigorous filtering, the quality

of the training dataset significantly impacts the performance, particularly in the localization

of subsequent edits. Noisy data continues to pose challenges. Despite applying several

criteria to filter out commits, we observed that noisy training samples can still introduce

adverse effects. One notable issue is that some programmers include irrelevant file

changes (and edits) within a single commit, complicating CoEdPilot’s ability to identify

edit locations accurately. Additionally, we found that a significant number of edits pertain

to code comments and documentation (e.g., commit 3f442 in the golang/go project),

which may not be effectively captured by CoEdPilot.

These extraneous changes complicate CoEdPilot ’s ability to accurately identify and

report edit locations. Cleaning the dataset to enhance edit relevance involves considerable

effort and is both iterative and interactive, requiring a blend of human oversight and

automated processes. This aspect of data refinement is earmarked for future development.

102

CHAPTER 5. PROGRAM EVOLUTION

Table 5.4: The accuracy of propagating-file & line location

Programming
Language

File Location Line Location

Precision
(%)

Recall
(%)

Accuracy
(%)

Precision
(%)

Recall
(%)

JavaScript 81.52 71.21 94.89 86.62 83.88
Python 70.84 73.40 94.48 85.03 82.64
Java 85.28 75.67 95.37 87.99 85.99
Go 80.10 72.12 95.79 88.99 87.32
TypeScript 79.84 72.25 95.23 86.21 84.25
Average 79.52 72.93 95.15 86.97 84.82

Reason 2: Informativeness of Edit Inference. Another issue stems from the unidirec-

tional nature of certain code edits. For instance, the addition of a method call typically

necessitates the inclusion of a corresponding library import, but the reverse may not always

be true. This non-causal relationship between edits presents a significant challenge for

inference mechanisms. While the current language model captures interactions between

edits, integrating additional information sources, such as test cases, could potentially

enhance the accuracy and robustness of the inferences.

These insights underline the complexity of edit pattern recognition and suggest avenues

for enhancing the efficacy of CoEdPilot through targeted dataset refinement and enriched

inference mechanisms in future iterations.

5.5.4.2 RQ3 and RQ4 (Edit Generation & Prior Edit Prediction)

Table 5.5 outlines the overall performance of edit generation using Top-k candidates.

Furthermore, Table 5.6 emphasizes the impact of prior edits in improving the accuracy of

locating subsequent edits and generating corresponding content. The results demonstrate

that (1) CoEdPilot achieves strong performance in generating edit options. (2) Selective

prior edits significantly enhance the performance of the system. In contrast, random

prior edits disrupt the patterns, introducing additional noise and confusion during the

recommendation process. Moreover, we observe that the reasons for mispredictions in

edit options align closely with those discussed in Section 5.5.4.1.

5.5.4.3 RQ5 (Performance Boost)

Table 5.7 compares the performance of CoEdPilot against three baseline methods—GRACE,

CCT5, and CoditT5—for generating the top-1 edit option. As detailed in Section 5.5.3.5,

our experimental setup involves providing fine-tuned baseline models with hunk-level loca-

103

CHAPTER 5. PROGRAM EVOLUTION

Table 5.5: The performance of edit generation
Programming
Language Metric Top-1 Top-3 Top-5 Top-10

Javascript BLEU4 60.70 69.71 71.37 73.02
EMR(%) 41.83 47.50 49.31 50.99

Python BLEU4 57.59 65.65 67.47 69.11
EMR(%) 33.48 38.52 40.41 42.09%

Java BLEU4 60.54 68.35 70.11 71.73
EMR(%) 40.69 46.87 48.78 50.51

Go BLEU4 65.37 71.96 73.47 74.98
EMR(%) 48.94 55.09 57.18 59.16%

Typescript BLEU4 61.75 70.31 71.99 73.68
EMR(%) 41.58 46.86 48.57 50.65

Table 5.6: The Relevance Score for the Edit Location & Generation of Prior Edits

Prior Edit
Relevance

Edit-propagating
line locator

Edit-content
generator

Accuracy
(%)

Precision
(%)

Recall
(%)

EMR
(%) BLEU4

Selective
Prior Edits

94.89 86.62 83.88 41.83 60.70

Random
Prior Edits

91.86 81.73 72.37 18.87 46.56

tions—that is, the specific lines involved in a hunk—to predict the necessary code edits. It

is evident from our findings that there is a significant performance gap between CoEdPilot

and these baseline models. The primary reason for this disparity is that CoEdPilot’s edit

locator component significantly enhances the precision with which the edit generator can

apply modifications, allowing for more accurate and contextually appropriate changes.

Expanding on the capabilities of CoEdPilot, we experimented with substituting our

native edit generation model with those from fine-tuned baselines and observed a sub-

stantial improvement in the performance metrics of both GRACE and CCT5 models.

This improvement underscores CoEdPilot’s versatility and effectiveness as an integrative

framework that boosts existing technologies. It is important to note that while CoditT5

also has the capability to predict edit locations similar to CoEdPilot, we did not pair it

with our locator. The reason for this is our model’s ability to utilize a greater input length

than CoditT5, which is particularly advantageous given the limitations of existing models

like CodeT5.

This strategy not only showcases the robustness of CoEdPilot but also highlights its

potential to serve as a foundational framework that can be further enhanced by integrating

104

CHAPTER 5. PROGRAM EVOLUTION

Table 5.7: CoEdPilot Enhance the Performance
Approach EMR(%) BLEU4
CoEdPilot (Line Locator + Edit Generator) 29.96 78.58
CoditT5 7.42 69.01
GRACE 2.73 38.36
CCT5 14.19 75.37
GRACE + Line Locator 18.61 71.61
CCT5 + Line Locator 15.45 78.27

Table 5.8: Runtime Estimation of CoEdPilot

Step File locator
(s / file)

Line locator
(s / file)

Edit-content
generator

(s / location)
Prepare Input 0.0064 0.3976 0.0683
Model Inference 0.1008 0.0878 0.3972
Total 0.1072 0.4854 0.4655

diverse model components, thereby extending its utility and applicability in real-world

coding environments.

5.6 User Study
To further assess how programmers can utilize CoEdPilot in practical settings, we

have devised a user study to evaluate its features.

Baseline. To determine the efficacy of CoEdPilot in supporting real-world code editing

tasks, we have selected Copilot [70] as the baseline comparison due to its widespread use

and proven effectiveness in code generation. We decided not to include a full manual

editing mode in this study for the following reasons: (1) Copilot is enhanced by the

advanced GPT-3.5 Turbo technology, which has been empirically demonstrated to increase

programming productivity by 27% to 57% [148], and (2) constraints related to budget and

logistical overhead.

Participant. We recruited 18 participants from three universities across China and Singa-

pore, comprising both undergraduate and graduate students. A preliminary assessment,

including a test based on their programming experience, was conducted to form a demo-

graphic profile, detailed in [40]. Participants were then evenly divided into two groups

according to their experience levels. The experimental group utilized CoEdPilot, while

the control group worked with Copilot during the study.

Code Edit Tasks. We created simplified versions of three real-world code commits to

105

CHAPTER 5. PROGRAM EVOLUTION

reduce comprehension complexity and help participants focus solely on the editing tasks.

The tasks were designed to encompass a variety of common programming activities:

• Bug Fix (Task 1): Participants were presented with a bug where range(arr) was

incorrectly used instead of range(len(arr)) in multiple instances throughout the

project. They were tasked with identifying and correcting all occurrences of this error.

• Refactoring (Task 2): Participants were instructed to refactor the code by extracting

three duplicate code blocks into a reusable function.

• Feature Enhancement (Task 3): Participants were asked to add a scale capability for

normalizing input vectors in an existing class of classifiers. This task required making

multiple interdependent edits across the codebase.

Study Setup. We initiated the study with a comprehensive warm-up session that included

a tutorial for both CoEdPilot and Copilot, complemented by a practice task to ensure

participants were comfortable with the tools. Each participant was allotted 30 minutes

to complete each designated task. To facilitate the validation of their edits, we prepared

specific test cases for each task. These test cases were meticulously designed to ensure

that participants could verify the correctness of their edits.

Throughout the study, participants were instructed to record their sessions using a video

recorder, enabling us to perform a detailed analysis of their coding process. Performance

metrics were evaluated based on two main criteria: (1) The ability to complete the tasks,

as evidenced by passing all designated test cases and (2) The efficiency with which

participants completed the tasks, measuring how quickly and effectively they reached

solutions.

Results. Table 5.9 presents the performance of participants in completing the code-editing

tasks, leading to the following observations:

• Task 1: On average, CG completes Task 1 slightly faster than EG, though the difference

is not statistically significant (Wilcoxon Signed Rank test p-value = 0.33, effect size =

-0.08).

• Task 2: EG demonstrates faster completion times than CG for Task 2, but this improve-

ment lacks statistical significance (p-value = 0.07, which is greater than 0.05; effect size

= 0.60).

106

CHAPTER 5. PROGRAM EVOLUTION

Table 5.9: The overall performance in seconds of Experimental Group (EG) and Control
Group (CG).

EG Task1 Task2 Task3 CG Task1 Task2 Task3
P1 221 515 1196 P10 339 696 1287
P2 897 389 279 P11 360 776 1563
P3 366 487 216 P12 480 483 545
P4 160 529 963 P13 522 724 1770
P5 230 301 756 P14 277 395 838
P6 364 473 617 P15 181 446 930
P7 329 688 588 P16 337 720 825
P8 840 780 1020 P17 151 666 1515
P9 290 638 1050 P18 266 722 1563
Average 410.78 533.33 742.78 Average 323.67 625.33 1070.33

• Task 3: Conversely, EG significantly outperforms CG in Task 3, with the difference in

completion time being statistically significant (p-value = 0.003, which is less than 0.05;

effect size = 0.96).

Why CG Outperforms EG in Task 1? In Task 1, aimed at fixing duplicated bugs, we

observed that CoEdPilot users (EG group) initially struggled with the tool’s learning curve,

particularly in utilizing features for predicting edit locations and content. Additionally,

participants such as P2 and P8 exhibited hesitancy in trusting the tool’s recommendations

despite their accuracy. This skepticism led them to spend more time verifying the suggested

edits, slowing their overall performance. This scenario is typical for users adapting to any

new tool, whether in a user study or an operational setting. In contrast, some participants

in the Copilot group (CG), such as P17, efficiently utilized simple keyword searches to

locate necessary edits across the project due to the straightforward edit pattern in Task 1.

Why EG Outperforms CG in Task 2, Albeit Without Statistical Significance? In Task

2, which involved refactoring by method extraction, CoEdPilot users grew more adept at

navigating the tool, effectively switching between functions like location prediction, edit

generation, and edit option selection. This proficiency allowed them to identify cross-file

code duplications more efficiently, reducing the effort required for creating new functions.

Although the EG group began to outperform the CG group, the statistical significance

(a p-value of 0.07 approaching the critical threshold of 0.05) was not strong enough to

conclusively demonstrate a difference due to the limited sample size.

How EG outperforms CG in Task 3? Task 3, which involved enhancing model training

with a scale function, proved to be the most challenging. The required edits, such as

107

CHAPTER 5. PROGRAM EVOLUTION

inserting a scale parameter and associated decision logic, could not be easily identified

through keyword searches. The EG group generally outperformed the CG in handling these

complex editing patterns. However, performance varied significantly among participants:

some completed the task in less than five minutes, while others took considerably longer.

Analysis of tool logs and video recordings revealed that some participants misinterpreted

edit content, leading to erroneous code. Such errors propagated further confusing edits,

which were only identified after testing the edits. Human error in interaction-heavy

tools remains a persistent challenge. We aim to address these issues in future iterations

of CoEdPilot. The EG group accepted approximately 69.3% of the recommended edit

options, modifying 31.6% of these suggestions.

5.7 Threats to Validity
This section outlines potential factors that might compromise the validity of our work:

Internal Validity: There exists a potential bias in the study’s internal validity due to

different levels of familiarity with the tools used. The experimental group may experience

a steeper learning curve than the control group, which is already familiar with CoPilot.

This disparity in learning experiences might cause the differences observed in the test

results, attributing them more to learning effects than to the true performance of the

extension.

External Validity: Our study’s code editing tasks were simplified versions of real-world

code commits, complete with detailed instructions. This setup may not accurately reflect

the complexity and unpredictability of typical coding scenarios developers encounter.

Additionally, the study’s focus solely on Python programming tasks may limit the ap-

plicability of our findings across other programming languages, potentially skewing the

perceived effectiveness of the plugin.

Statistical Validity: Due to constraints on time and resources, the study was conducted

with a relatively small sample size of 18 participants. This limited participant pool

may not provide enough statistical power to reliably detect significant differences in the

effectiveness of the extension. As such, the generalizability and robustness of our findings

could be questioned, suggesting a need for cautious interpretation of the study results.

108

CHAPTER 6. PROGRAM ADAPTATION

Chapter 6

Program Adaptation

6.1 Introduction
Deep language models have progressively scaled in size to enhance their performance.

(Ultra-)large language models, such as GPT-3 [153], CodeX [34], and InstructGPT [156],

have demonstrated remarkable effectiveness. However, these models typically comprise

millions of neurons, resulting in significant training and maintenance costs, making them

less accessible for individual users.

In contrast, relatively smaller models, such as CodeBERT [57] and CodeT5 [204],

are more cost-effective and easier to maintain. Nevertheless, these smaller models often

face challenges in handling large and diverse training datasets, leading to compromises

in performance across varied training samples. Researchers usually prepare a diversified

corpus regarding different projects, topics, and programming languages to achieve a more

generalizable performance for software engineering tasks.

For example, the CodeSearchNet[88] dataset used to train CodeBert and CodeT5

consists of 6 program languages, more than 100 projects, and multiple programming

topics. The diversity is expected to train a model that can generalize well in as many

unseen code samples as possible. However, the multiple training samples can also lead

to a “conflicting” effect when the model is training. Our study quantifies the conflicting

effect of a pair of training samples s1 and s2 by Equation 6.1.

kconf = ∂loss(s1)
∂θ

× ∂loss(s2)
∂θ

(6.1)

In Equation 6.1, loss(.) is the function to measure the loss of a training sample and θ

represents all the trainable parameters of a deep neural network. Intuitively, kconf being

109

CHAPTER 6. PROGRAM ADAPTATION

positive indicates θ fitting si can facilitate the fitting of sj and vice versa. In contrast,

kconf being negative indicates θ fitting si has the cost of fitting sj and vice versa. Our

empirical study on the popular CodeSearchNet datasets and Funcom[110] dataset shows

that 78% training samples have a conflicting effect with each other. Overall, we observe

that conflicting effects are prevalent regardless of the types of models and training corpora.

We take the code summarization task as an example. To achieve an adaptive model,

we propose Adacom, a real-time model adaptation solution designed to enhance the

performance of deep neural networks. Adacom takes as input a target code c, a comment

generator g, and a dataset D. It adapts g in real time to produce an improved model g′,

enabling better performance in generating comments for c.

Our approach is based on the rationale that there exists a subset of samples Ds ⊂ D

that are particularly useful for the comment generator to learn how to summarize c.

Technically, the process involves the following steps:

1. Building an Influence Graph: We construct an influence graph Ginf over the dataset

D, where each node represents a sample, and edges indicate whether the relationship

between two samples is helpful or harmful for training.

2. Identifying Semantic Helpful Samples: For a given target code c, we employ a

model-representation-based metric to identify training samples in D that are potentially

semantically helpful to c.

3. Enriching the Helpful Sample Set: Using the influence graph Ginf , we expand the

set of helpful samples Ds. This set is then used to fine-tune the model in a lightweight

manner, allowing the model to:

• Learn from helpful samples, and

• Unlearn harmful samples.

4. On-the-Fly Retraining: If certain training samples are identified as having a positive

influence or being semantically helpful for c, the model g is retrained on the fly to

produce g′. This retraining reinforces helpful samples and eliminates the influence of

harmful samples.

Adacom thus enables a dynamic, targeted adaptation process to improve comment genera-

tion for specific target code snippets.

110

CHAPTER 6. PROGRAM ADAPTATION

Above all, we design Adacom to achieve three key research goals:

• Compromise Detection: Adacom aims to detect whether a language model may exhibit

compromised performance on a given test sample.

• Sample Searching: Given a test sample and a dataset, Adacom identifies a subset of

samples within the dataset that can help mitigate model bias and enhance specialization

for the test sample.

• On-the-Fly Model Tuning: Leveraging a test sample and a few labeled samples,

Adacom dynamically adapts the model in real-time to improve its performance on the

test sample.

The solution provided by Adacom is orthogonal to many deep-learning-based methods,

including advancements in model architectures [126], model training [74], and repre-

sentation learning [113]. Additionally, Adacom is delivered as an assistant framework

with abstracted APIs, enabling support for various models based on the encoder-decoder

architecture.

We evaluate Adacom by testing its ability to enhance seven comment generators across

four datasets. The experimental results demonstrate that:

1. Adacom significantly improves comment generation performance, with average in-

creases of 14.9% in BLEU4, 12.2% in METEOR, and 7.4% in ROUGE-L scores.

2. The adaptation process for an individual code sample incurs minimal runtime overhead.

3. Adacom generalizes effectively to out-of-distribution code samples, showcasing its

robustness.

In summary, this work makes the following contributions:

• Empirical Observation: We report the conflicting effect on the training datasets over

the state-of-the-art deep language models, which shed light on one of the potential

performance bottlenecks on the comment generators.

• Technical Design: We propose the Adacom solution, generalizable for any deep lan-

guage models with encoder-decoder architectures, to boost their performance on indi-

vidual code samples on the fly.

111

CHAPTER 6. PROGRAM ADAPTATION

Table 6.1: Motivating Example: Compromise Problem in Neural Network Models with
Conflicting Training Effects on Test Predictions

Sample Target Test Sample, ct Harmful Training Sample, charm Helpful Training Sample, chelp

Code

public static java.
sql.Timestamp

internalToTimestamp
(long v) {

return new java.
sql.Timestamp

(v - LOCAL_TZ.
getOffset(v));
}

private Date longToDate
(long val, int
sqlDataType) {
switch (sqlDataType
) {

case Types.DATE:
return new java.sql.

Date(val);
case Types.TIME:
return new java.sql.

Time(val);
case Types.TIMESTAMP:
return new java.sql.

Timestamp(val); } }

public static java.sql
.Date
internalToDate(
int v) {

final long t = v

* MILLIS_PER_DAY;
return new java.sql.

Date(t - LOCAL_TZ.
getOffset(t));

}

Ground
Truth

Converts the internal represen-
tation of a SQL TIMESTAMP
(long) to the Java type used for
UDF

Parse the long-valued timestamp into
the appropriate SQL date type

Converts the internal representation
of a SQL DATE (int) to the Java type
used for UDF parameters (@link
java.sql.Date)

Origin Converts the internal { @ link long } (local to a { @ link TIMESTAMP }) representation
After
Harmful

Parse the long-valued TIMESTAMP into a { @ link TIMESTAMP } representation

After
Helpful

Converts the internal representation of a SQL TIMESTAMP (long) to the java type used for UDF

• Experimental Evaluation: We conduct extensive experiments on seven models over

four datasets, showing that our Adacom solution can significantly boost the performance

of comment generation under diverse scenarios.

6.2 Overview

Given a piece of source code c, we first track the most influential training samples

Sinf , which should be the most useful for contributing to g’s performance on c. Next, we

estimate the potential boosting performance of g on c by (1) how well g can fit Sinf and

(2) how consistent the training samples in Sinf can facilitate g’s performance on c. Then,

a confidence score is derived as the measurement. Intuitively, the better performance of g

can fit Sinf , and the more consistent Sinf can facilitate g’s performance on c, the higher

the confidence score. Once the confidence score exceeds a pre-defined threshold, we

fine-tune g on Sinf with a limited number of learning steps to g′ to boost the comment

generation performance of c.

Table 6.1 shows an example of how Adacom applies on-the-fly adaptation to adap-

112

CHAPTER 6. PROGRAM ADAPTATION

tively switch the compromise of a CodeBERT-based comment generator to improve its

performance on a specific code sample. In Table 6.1, three code samples are highlighted:

the second column represents the target code ct for generating comments, the third column

contains the harmful training sample charm that negatively impacts predictions for the

target code, and the last column presents the helpful training sample chelp that improves

predictions for the target code.

The second row provides the code text, while the third row lists the ground truth

comments. The fourth row shows the comments generated by the model after fine-tuning

without any additional training. The fifth row displays the comments generated after

training on harmful samples, and the last row demonstrates the output after training on

helpful samples. Overall, the results indicate that training with helpful samples leads to

improved performance in generating comments for ct. Next, we illustrate how Adacom

detects the model compromise and adapts the model for a more precise code summarization

performance.

Step 1. Influence Construction. In this example, Adacom begins by determining the

influential relationships for the training samples. For simplicity, we highlight only the

influence between charm and chelp, as shown in Table 6.2. The calculated influence score

for charm and chelp is -0.76, suggesting that the deep learning model has adjusted its

behavior to accommodate this pair. Notably, charm and chelp exhibit a similar get-by-

return code structure, but their associated comments differ significantly in tone and style,

reflecting project-specific conventions. Details on the influence score computation can be

found in Section 6.4. At this point, we identify and store all "contradictory" pairs within

the training dataset for further analysis.

Step 2. Training Contribution Construction. Next, to find the helpful training samples,

we estimate the potential contribution of the training samples to the target code ct. We

assume that the chelp is one of the semantically relevant training samples. Intuitively, ct

and chelp share a similar representation within the deep comment generator, providing a

strong indication for selecting chelp. Using the influence score, we further expand chelp

into a set of related code samples. The methodology for measuring training contributions

will be detailed in Section 6.4.3. In some cases, Adacom may not identify any contributing

training samples. In the example shown in Table 6.1, the set chelp is identified as the

contributing sample. At this stage, we assemble the set of potentially helpful samples

from the training dataset for further analysis.

113

CHAPTER 6. PROGRAM ADAPTATION

Table 6.2: We show the influence scores and the corresponding estimated training contri-
bution of the examples shown in Table 6.1.

Sample Estimated Influence Estimated Contribution
charm chelp charm chelp

ct / / 0.23 0.67
charm 1 -0.76 / /
chelp -0.76 1 / /

Step 3. On-the-fly Retraining. Finally, helpful code samples such as chelp are utilized

to retrain the comment generator, transforming g into an updated version, g′. While both

charm and chelp are effectively modeled by g, retraining introduces observable changes in

the generated comments, particularly in the last three rows. Before retraining, the original

comment generator produces a broader and less accurate comment. After incorporating the

helpful sample, however, the updated generator g′ generates a more specific and precise

comment for ct—without relying on the ground-truth comment.

In essence, Adacom is designed to identify potential compromises and adapt the

model for targeted scenarios. It is important to note that both g and g′ involve trade-offs.

The original generator g aims to balance fitting charm and chelp, striving for a globally

optimized solution. In contrast, the retrained generator g′ prioritizes fitting chelp over

charm, adopting a more localized optimization approach to improve the comments for ct.

As demonstrated in our experiments (see Section 6.5), this targeted adaptation enhances

the performance of state-of-the-art comment generators with minimal runtime overhead.

6.3 Problem Formulation
In this work, we define the problem formulation as follows. Given a comment generator

g, the training dataset D = {di = ⟨ci, comi⟩}, one target code sample ct, and its ground

truth comment comt, without knowing comt, we need to find a subset selection solution

W = {wi ∈ [0, 1]1} on D to minimize L(g(ct), comt) where:

g′ = arg min
N∑

i=1
wi · L(g(ci), comi) (6.2)

In Equation 6.2, we assume that g′ is trained from g, wi = 1 indicates that the sample

di remains in the training set; in contrast, wi = 0 indicates that the sample di is removed

from the training set. As for the motivating example in Section 6.2, if we only retrain the

114

CHAPTER 6. PROGRAM ADAPTATION

1. Influence
Construction

D

Training Dataset
Comment

Generator, g

Target Code

Training

Contributing
Training Samples

3. On-the-fly Model
Retraining

Code Comment

Sample Influence
Relation

2. Training Contributing
Estimation

Comment
Generator, g’

Offline Stage Online Stage

SOTA Comment Generation

Figure 6.1: Adacom framework.

comment generator on the subset {chelp}, we set the weight wi for chelp to be one and all

the other weights to be 0. Generally speaking, the problem is challenging because

• Information Insufficiency: Given that comt is unknown, we cannot define a precise

loss function L(g(ct), comt). Therefore, an estimation of comt is needed;

• Combinatorial Explosion: The training dataset is usually huge even if we have the

estimated comment com∗
t . Thus, it would be computationally expensive to find the

global optima W to minimize L(g(ct), com∗
t).

We address the information insufficiency problem by estimating the target sample’s

unknown loss using similar training samples in D. The technical challenge lies in how

we systematically consider the similarity of both the code and the model interpretation

of the code for more precise estimation. Further, we address the combinatorial explosion

problem by constructing the influence graph on the training dataset D, which allows us to

prune many less influential and negatively influential training samples.

6.4 Approach
Figure 6.1 illustrates the framework of Adacom, which is divided into two stages: an

offline stage and an online stage. We assume that a state-of-the-art method has been used

to train the comment generator g on a dataset D.

During the offline stage, the comment generator g is trained using the dataset D. Based

on D and g, we define the concept of influence estimation and construct an influence graph

that captures the pairwise mutual influence among training samples in D. This Influence

115

CHAPTER 6. PROGRAM ADAPTATION

Construction process identifies helpful and harmful samples, while cached representations

and influence scores facilitate efficient retrieval during the online stage.

In the online stage, the system retrieves semantically helpful training samples based

on the target code and uses them to retrain the comment generator, transforming g into an

updated version, g′. This lightweight retraining process adapts the model to generate new

and improved code comments. Specifically, training contributions are estimated to identify

samples with potential semantic relevance to the target code, enabling the generation of

more accurate and precise comments.

6.4.1 Influence Construction

We first introduce the definition of the influence score and then utilize the training

contribution to estimate the influence score of the training samples to the test sample.

Influence Definition We denote a comment generator as g, its training dataset as

D = {d1, d2, ..., dn} where di = (ci, comi), ci is the code and comi is its comment.

Let L(g(ci), comi) be the loss of di, and space of all the possible generators be G. The

state-of-the-art approaches search for g∗ = arg ming∈G
1
n

∑n
i=1 L(g(ci), comi). Given two

samples d1 and d2 where d1, d2 ∈ D, we define the influence of d2 on d1, inf(d1, d2, ϵ),
as follows:

inf(d1, d2, ϵ) = L(g∗(c1), com1) − L(ĝ(c1), com1) (6.3)

g∗ = arg min
g∈G

1
n

n∑
i=1

L(g(ci), comi) (6.4)

ĝ = arg min
g∈G

∑
di∈D\{d2} L(g(ci), comi) + (1 + ϵ)L(g(c2), com2)

n
(6.5)

In Equation 6.3, we define the influence of d2 on d1 by the difference of the perfor-

mance of two trained comment generators g∗ and ĝ on the loss of d1. g∗ is the trained

generator on the dataset D as showed in Equation 6.4; in contrast, ĝ is the trained generator

on the dataset D where the training weight of d2 is readjusted by ϵ (ϵ > 0). Intuitively,

inf(d1, d2, ϵ) evaluates whether the model can better fit if we upweight d2 by ϵ during

the model training. Further, we call the ϵ the empirical influence margin. Intuitively, the

larger positive inf(d1, d2, ϵ), the more influential d2 is on d1.

116

CHAPTER 6. PROGRAM ADAPTATION

Similarly, the influence of d1 on d2 can be denoted as inf(d2, d1, ϵ). Therefore, we

define the mutual influence between d1 and d2 as mul_inf(d1, d2, ϵ) as

mul_inf(d1, d2, ϵ) = inf(d1, d2, ϵ) + inf(d2, d1, ϵ) (6.6)

We can see that Equation 6.6 is symmetric. Intuitively, a large positive mul_inf(d1,

d2, ϵ) indicates that d1 and d2 can “help” each other during the model training; a large

negative mul_inf(d1, d2, ϵ) indicates that d1 and d2 can “harm” each other during the

model training; and small |mul_inf(d1, d2, ϵ)| indicates that d1 and d2 are independent of

each other.

While the above definition is intuitively measurable, it is challenging to make it

practical because

• Computationally Cost: The above definition requires exhaustively retraining the model

for every pair of training samples. While the training dataset is vast, the retraining cost

is hardly acceptable.

• Empirical Hyperparameter: The empirical influence margin usually needs to be

decided through trial and error, which incurs additional engineering overhead.

6.4.2 Estimated Influence

We propose a gradient-based method for efficiently estimating the model-dependent

mutual influence between any pair of training samples.

Influence Estimation Consider a comment generator g with a training dataset D =
{d1, d2, . . . , dn}, where each sample di = (ci, comi) comprises a code snippet ci and its

corresponding comment comi. Let L(g(ci), comi) denote the loss for sample di, and let

θ represent the parameters of the trained comment generator g∗. The empirical mutual

influence mul_infe between d1 and d2 is defined as:

mul_infe(d1, d2) = grad(d1) · grad(d2)
|grad(d1)| · |grad(d2)|

(6.7)

grad(di) = ∂L(g∗(ci), comi)
∂θ

(6.8)

Equation 6.7 is model-dependent compared with the definition in Equation 6.6. In

other words, we now empirically investigate how likely it is that we can reduce the loss of

117

CHAPTER 6. PROGRAM ADAPTATION

d1 by reducing the loss on d2 (and vice versa) on the comment generator g∗. Nevertheless,

Equation 6.7 has the following benefits:

• Symmetry: Similar to Equation 6.6, the gradient-based calculation is symmetrical,

i.e., mul_infe(d1,d2) = mul_infe(d2,d1). The property is helpful for many follow-up

calculations, such as clustering (see Section 6.4.2).

• Efficiency: Different from Equation 6.6, mul_infe(d1,d2) does not require retraining

the model. The complexity is only relevant to the size of the model. We can even

empirically select partial model layers to improve efficiency.

• Bound: mul_infe(d1,d2) is bounded within (-1, 1), which is convenient for the follow-

up measurement and calculation. Specifically, mul_infe(d1,d2) being close to 1 indi-

cates that d1 and d2 are mutually helpful, that being close to -1 indicates that d1 and d2

are mutually harmful.

Influence-based Graph Taking the mutual influence between every pair of the training

samples, We further build the influence graph by clustering all the training samples by the

Birch hierarchical clustering algorithm [230]. We use complete linkage for the clustering

to ensure the helpful strength of the samples in each cluster. As a result, given a similarity

threshold th, the training dataset D is converted into a cluster set Cinf = {c1, c2, ..., ck}.

For each ci ∈ Cinf , we measure its helpful strength by

strength(ci) = 2
|ci| × (|ci| − 1)

∑
dp,dq∈ci,p ̸=q

mul_infe(dp, dq) (6.9)

6.4.3 Training Contribution Construction

In this section, we focus on estimating the potential of a training sample dtra =
(ctra, comtra) to improve the generated comment for a target code ct with an unknown

comment. Using a comment generator g, we evaluate how effectively dtra can be utilized

to retrain g to enhance its prediction for ct.

Semantic Similarity The underlying principle is that training samples whose internal

representations, as perceived by the model g, closely resemble that of ct are more likely

to belong to a similar distribution. These semantically similar samples are thus more

118

CHAPTER 6. PROGRAM ADAPTATION

informative and better equipped to improve the prediction quality for ct. The choice of the

internal representation allows us to have two benefits:

• Model-specific Interpretation: Internal representation lets us capture how the trained

comment generator (e.g., CodeBERT or Code T5) interprets the training samples. Note

that code that appears similar from a human perspective may not necessarily be identical

from the model’s perspective. Nevertheless, the model can interpret them differently.

• Semantic Generalization: The state-of-the-art approaches with the BERT-based archi-

tecture (e.g., Code T5, CodeBERT, GraphCodeBERT) allow us to generalize synonyms

(e.g., “admin” and “administrator”, “service” and “svc”, etc.) more easily in similar

contexts.

Representation Assumption We hypothesize that deep learning-based language models

generate internal representations for each code sample. Let a code sample be represented

as c = ⟨t1, t2, ..., tn⟩ and the comment generator as g. When processing token ti, the

model g produces an internal representation denoted as ri = h(ti), where h(.) is the

internal representation function of g. We think that the assumption holds for most neural

network-based models. For instance, both unidirectional and bidirectional recurrent neural

networks, as well as transformer-based architectures, satisfy this condition. Figure 6.2

provides an overview of the encoder architecture used in BERT-based transformers. For

simplicity, details such as multi-head attention and the computation of query, key, and

value vectors are omitted. After tokens are transformed into vector embeddings using

the word2vec layer, they pass through stacked encoder layers to obtain optimal internal

representations, which are then used by the decoder to generate comments. The space R,

known as the representation space, encompasses all possible internal representations.

Contribution Estimation Formally, given one test sample c = ⟨t1, t2, ..., tn⟩ and its

semantic internal representation ĉ = ⟨ h(t1), h(t2), ..., h(tn)⟩ = ⟨r1, r2, ..., rn⟩, it can be

regarded as a dynamic trajectory in the representation space. We show an example in

Figure 6.3. To clarify our illustration, we demonstrate the representation space in a 3-

dimensional space, where each point represents the internal representation when the model

generator parses a token ti. The black sequence represents the internal representation

of the target code, the green one represents the helpful training sample, and the red one

119

CHAPTER 6. PROGRAM ADAPTATION

byte get visibility get...

v1

Input

word2vec v1 v1 v1

encoder

p1 p2 p3 pnencoder

encoder q1 q1 q1 q1

r1 r2 r3 rn

encoders...

Figure 6.2: A simple illustration of BERT architectures.

byte

get

visibility

(

)

String

visible

get

name

byte

gettype

(

)
(

)

0x030x06

name

Figure 6.3: We use trace similarity to estimate the contribution of training samples to the
test sample.

represents the harmful training sample. Further, the same token can have a different

representation (or position in the representation space) because they may have different

contexts. This differs from the word2vec solution, where a token can always have its fixed

representation. For example, the token “get” in the code sample “byte get visibility ...”

has a different representation from the token “get” in “String get visible ...”.

Representation Comparison. Since a sequence of high-dimensional vectors will repre-

sent each code, we compare the target code c = ⟨r1, r2, ..., rn⟩ with the training samples.

Similar to the classical dynamic algorithm to calculate the longest common subsequence,

given two sequences c = ⟨r1, r2, ..., rn⟩ and c′ = ⟨r′
1, r′

2, ..., r′
m⟩, we will still construct

120

CHAPTER 6. PROGRAM ADAPTATION

a n × m matrix. The difference is that there is no exact match between the two token

representations. We quantify the contribution of training samples by computing the cosine

similarity between the internal representation vectors of two code samples. Generally, we

still measure the minimum editing distance between two sequences of high-dimensional

vectors. Intuitively, Equation 6.10 calculates the accumulated projection of c′ on c in the

representation space.

The following illustration assumes that readers are familiar with the dynamic pro-

gramming algorithm for calculating the longest common subsequence. More details can

be checked at [132]. Table 6.3 shows how we calculate the pairwise similarity between

two representation sequences. Note that the tokens in different sequences have different

representations; thus, the similarity between the same token is no longer 1. For example,

the similarity between two “byte”-words is 0.87 instead of 1. Then, we introduce a match

threshold hm to only match the representations with pairwise similarity over hm. We still

follow the dynamic programming routine to find the best match between two sequences

by constructing the matching matrix as shown in Table 6.4. Specially, given two token

representation v = c[i] and v′ = c′[j], we have:

1. M [i, j] = max(M [i − 1, j], M [i, j − 1]), if cos(v, v′) > hm

2. M [i, j] = max(M [i, j] + cos(v, v′), M [i − 1, j], M [i, j − 1]), otherwise.

As a consequence, given the representation sequences of the target code c and that

of a training sample c′, we can have a sequence of optimal match P = ⟨(rm1 , r′
m1),

(rm2 , r′
m2), ..., (rmk

, r′
mk

)⟩ where rmi
∈ c and r′

mi
∈ c′. Thus, we estimate the training

contribution score of c′ to c by:

tcs(c, c′) =
|P |∑
i=1

cos(rmi
, r′

mi
) (6.10)

6.4.4 On-the-fly Model Adaptation

Given a target code c and two thresholds th1 and th2, Adacom operates as follows:

it first identifies a subset of training samples M = {m1, m2, . . .} where each sample’s

training contribution score exceeds the user-defined threshold th1. If no such samples

are found, the model is not retrained. Otherwise, Adacom retrieves additional samples

121

CHAPTER 6. PROGRAM ADAPTATION

Table 6.3: The similarity matrix of two sequences of code representations.

byte get visibility () ... 0x03
byte 0.87 0.12 0.11 0.12 0.05
get 0.13 0.89 0.21 0.16 0.13
type 0.07 0.33 0.56 0.21 0.19

(0.05 0.12 0.18 0.93 0.88
) 0.03 0.08 0.15 0.87 0.91
...

0x06 0.77

Table 6.4: The algorithm based on soft-match for the token-level representations.

byte get visibility () ... 0x03
byte 0.87 0.87 0.87 0.87 0.87
get 0.87 1.76 1.76 1.76 1.76
type 0.87 1.76 2.32 2.32 2.32

(0.87 1.76 2.32 3.25 3.25
) 0.87 1.76 2.32 4.12 4.16
...

0x06 9.76

N = {n1, n2, . . .} from the influence graph that are associated with the nodes in M (see

Section 6.4.2). The estimated influence score between the samples in M and N must

surpass th2.

The retraining set is then augmented as S ′ = S ∪ Cinf (c1) ∪ . . . ∪ Cinf (cl), where

Cinf (ci) represents the influential cluster for ci. Threshold th1 filters semantically relevant

training samples, while th2 identifies those that can help the model mitigate the effects of

mutually harmful samples and retain mutually beneficial ones. If no mutually harmful

samples exist between M and N , as determined by the influence graph, Adacom excludes

these samples from further retraining.

Finally, all retrieved samples are used to retrain g, producing an updated model g′ that

generates a new comment for c as g′(c).
To minimize run-time overhead, Adacom freezes most of the neural network parame-

ters and updates only the last few layers. The number of retrainable layers is treated as a

user-configurable hyperparameter. Additionally, dropout and early stopping mechanisms

are employed to address overfitting and reduce retraining costs. The retraining process

halts either when a user-defined maximum number of epochs is reached or when the

retraining loss drops below the specified lower bound thlb.

122

CHAPTER 6. PROGRAM ADAPTATION

6.5 Evaluation
We evaluate Adacom by addressing the following research questions:

• RQ1: Can Adacom enhance the performance of various comment generation models?

• RQ2: Can Adacom improve comment generation across multiple datasets?

• RQ3: Does Adacom outperform neuron-based approaches augmented with retrieval

techniques?

• RQ4: How well does Adacom generalize to improve performance on out-of-distribution

samples?

• RQ5: What is the runtime overhead of Adacom when enhancing performance?

• RQ6: What role does each component of Adacom play in achieving performance

improvements?

6.5.1 Experiment Setup

Our experiments were performed on two Ubuntu 20.04 servers, each featuring dual

AMD Ryzen™ 9 5950X 16-Core CPUs, 128 GB of RAM, and two Nvidia RTX™

A4000 GPUs. The software environment was set up with Python 3.7 and the Anaconda

distribution. PyTorch served as the primary deep-learning framework, and pre-trained

models were obtained from the Transformers library (version 4.13.0). All models were

fine-tuned using the provided training datasets to achieve optimal performance.

Measurement Following existing literature [7, 109, 3, 206, 89, 6, 25], we use smoothing

BLEU4 [160][120], METEOR [12], and ROUGE-L [119] to evaluate the performance of

code comment generation.

Baselines We selected seven widely-used language models, including RoBERTa [127],

CodeBERT (small and base versions) [57], GraphCodeBERT [74], and CodeT5 (small,

base, and large versions) [204]. These models were chosen to ensure diversity in their

pre-training corpora (e.g., RoBERTa for natural language and CodeBERT for code),

architectural designs, and scalability across different sizes. Roberta, Codebert, and

123

CHAPTER 6. PROGRAM ADAPTATION

Table 6.5: The Statistics of the Experiment Datasets

Dataset Train Valid Test
FunCom 1,954,807 104,273 90,908
CosBench 296,425 42,348 84,694
CodeKG 161,857 20,282 40,512
CSN-Python 251,820 13,914 14,918
CSN-PHP 241,241 12,982 14,014
CSN-Go 167,288 7,325 8,122
CSN-Java 164,923 5,183 10,955
CSN-JavaScript 58,025 3,885 3,291
CSN-Ruby 24,927 1,400 1,261

GraphCodebert follow the same architecture but have different pre-trained tasks and

parameters. Roberta is pre-trained only on natural language, while all other models

are originally pre-trained on the CodeSearchNet dataset. Besides, we use the variants -

Codebert-small and CodeT5-small to test how the Adacom improves the performance of

small models. CodeT5-large is our experiment’s largest model, and it is a comparison

example of efficiency and resources.

6.5.2 Datasets

We select four public datasets with six different kinds of program languages, including

FunCom [109], CodeSearchNet [88] (CSN), CodeKG [39] and CosBench [213]. Table 6.5

shows the details.

CodeKG Dataset The CodeKG dataset selects the top 100 Java projects based on their

GitHub popularity (measured by the number of stars). These projects contain:

• 140,000 Java source files,

• 184,000 classes,

• 16,000 interfaces,

• 1.3 million methods, and

• 5.9 million fields (including formal parameters and local variables).

Automatically generated comments (e.g., those with @parameter, @return, and

@author annotations) and comments with copyright claims are excluded. After pre-

processing, the dataset contains 202,000 Java methods with both code and associated

124

CHAPTER 6. PROGRAM ADAPTATION

comments. The dataset randomly selects 141 thousand (∼70%) code-comment pairs as the

training set for those methods with available comments. For the rest of the code-comment

pairs, it chooses the code-comment pairs with no graphical connection to any of the nodes

in the training set as the testing set. As a result, it has 40 thousand (∼20%) code-comment

pairs as the testing set.

CodeSearchNet Dataset The CodeSearchNet dataset, introduced by [88], comprises

code-comment pairs collected from publicly available, non-fork GitHub repositories.

These repositories must be used by at least one other project and have a license permitting

the redistribution of project components. The dataset spans six programming languages:

Go, Java, JavaScript, Python, PHP, and Ruby. Only functions (or methods) with associated

documentation are included. Each code-comment pair is processed as follows:

The code is tokenized using TreeSitter [24], GitHub’s universal parser. The comment

is truncated to the first whole paragraph. Code-comment pairs are filtered based on three

rules: (1) Documentation must be at least three tokens long. (2) The function name must

not contain the substring "test." (3) Identical codes are removed. Dataset sizes for each

language are detailed in Table 6.5.

Funcom Dataset The Funcom dataset, prepared by LeClair et al. [109] from the

Sourcerer repository provided by Lopes et al. [130], which contains over 51 million

Java methods from 50,000+ projects. The authors applied several filtering steps: (1)

Methods preceded by JavaDoc comments (indicated by /**) were retained, with the first

sentence extracted as the comment. (2) Comments containing non-English words were

excluded. After these steps, 4 million methods remained. Further filtering removed

auto-generated code by excluding files with phrases like "generated by." However, unique

auto-generated codes were retained. Ultimately, the dataset consists of about 2.1 million

method-comment pairs. The dataset is split by project, meaning every project’s methods

are divided into training, validation, and testing subsets by 90%-5%-5%. Specifically, the

size of the training set is 1,954,807; the testing set size is 90,908, and 104,273 for the

validation set.

CosBench Dataset The CosBench dataset, created by [213], is designed for evaluating

code search methods. It includes three components: Codebase, QAset, and Metrics.

125

CHAPTER 6. PROGRAM ADAPTATION

Since QAset and Metrics are irrelevant to this study, we focus on the Codebase. The

Codebase comprises 1,000 popular GitHub Java projects, containing 475,783 Java files

and 4,199,769 methods, totaling 1.4 Gigabytes. For data cleaning and preprocessing, the

authors followed the approach in [72]: (1) Java method names and bodies were split by

camel case. (2) Duplicate tokens and stopwords (e.g., "the," "in") were removed. (3)

JavaDoc comments were extracted from the Abstract Syntax Tree (AST) of the methods.

We split the dataset by 70%-20%-10%, and the training set has 296,425 instances, the test

set has 84,694 cases, and the validation set has 42,348 samples.

6.5.3 Experiment Design

To address RQ1 (cross-model evaluation), we fine-tuned multiple language models

using the CodeKG dataset. The CodeKG dataset was chosen for its diversity across

selected projects and its detailed project-code relationships, which support deeper analysis

[39]. Considering the randomness introduced by the dropout mechanism during on-the-fly

retraining, each experiment was repeated five times to assess the consistency of Adacom.

For RQ2 (cross-dataset evaluation), we assessed the ability of Adacom to enhance

CodeT5-small across four datasets. The CodeT5-small model was fine-tuned individually

on each dataset, after which Adacom was applied to evaluate its impact across all test

datasets.

To investigate RQ3 (retrieval-methods comparison), we compared Adacom to Retro

[76], a retrieval-augmented approach, and a technique that retrieves helpful examples

using [CLS] tokens with cosine similarity. Unlike Retro, which retrieves and concatenates

similar samples during training, Adacom focuses on retrieving helpful samples for each

test case during the testing phase without altering the training stage.

For RQ4 (generalization), we followed the methodology in [199] and created a dataset

with separate source and target splits. The source and target datasets featured distinct

types of training and testing samples. We evaluated Adacom by applying it to the target

testing dataset, identifying helpful samples in the target training dataset, and adapting the

model using only those samples during on-the-fly training. Crucially, no fine-tuning was

performed on the target domain; instead, the estimated influence and representations of

the target training dataset were cached during the offline stage. This setup allowed us to

evaluate Adacom ’s ability to adapt to new domains by selectively retraining on helpful

126

CHAPTER 6. PROGRAM ADAPTATION

samples rather than the entire dataset. We defined the dataset splits across three levels of

granularity:

• Cross-Language Generalization: Adacom was applied to T5 [170] and Roberta models

pre-trained exclusively on natural language corpora. These models (source training

datasets) were used to generate code comments on the CodeKG dataset (target testing

dataset). Adacom ’s performance was evaluated by on-the-fly retraining using a small

subset of helpful samples from the CodeKG training dataset.

• Cross-Programming Language Generalization: Adacom was used with a Roberta model

trained on CSN-Java to generate comments for Python, PHP, Go, JavaScript, and Ruby

code in the CSN dataset. The Roberta model was trained on CSN-Java’s training data

(source dataset), and Adacom ’s performance was evaluated by identifying helpful

subsets from the training datasets of other programming languages.

• Cross-Project Generalization: Using project-level information from CodeKG, we split

the code corpus into Dpj1 and Dpj2 . The Roberta model trained on Dpj1 was evaluated

on Dpj2 , with Adacom enhancing performance by leveraging helpful samples from

Dpj2 .

For RQ5 (runtime overhead evaluation), we measured runtime performance during

the RQ2 experiments. Two configurations were used: an RTX 3080 GPU on a Windows

platform to simulate a developer’s working environment and an A4000 GPU on Ubuntu

for lab testing. We recorded the average improvement in smoothing BLEU-4 scores across

all datasets and the total time required for testing. Cost performance was then calculated

by determining the improvement in smoothing BLEU-4 per second.

To answer RQ6 (ablation study), we compared Adacom ’s performance across three

scenarios: (1) Using the comment from the most helpful sample as the prediction. (2)

Employing a standalone model without adaptation to generate predictions. (3) Comparing

CodeT5+[203] with CodeT5-small and CodeT5-base models equipped with Adacom.

6.5.4 Experiment Results

The following section shows the experiment results for each research question.

127

CHAPTER 6. PROGRAM ADAPTATION

Table 6.6: Boosting performance of Adacom: Cross-model Evaluation

Model Scale Parameter BLEU4 METEOR ROUGE-L

before after bst (%) before after bst (%) before after bst (%)
codeT5 small 60M 34.89±0.26 49.05±0.38 40.6 43.74±0.00 56.73±0.08 29.7 50.98±0.00 61.23±0.09 20.1
CodeBERT 84M 40.83±0.31 48.84±0.72 19.6 48.84±0.32 57.07±0.50 16.9 54.82±0.28 60.40±0.47 10.2

RoBERTa

base

173M 44.73±0.08 48.71±0.45 8.9 52.67±0.17 57.23±0.60 8.7 57.78±0.15 60.28±0.59 4.3
CodeBERT 173M 44.30±0.34 48.35±0.43 9.1 52.35±0.38 56.74±0.26 8.4 57.71±0.39 59.81±0.26 3.6
Graph 173M 45.51±0.48 49.40±0.53 8.5 53.68±0.58 57.82±0.46 7.7 58.89±0.60 61.13±0.48 3.8
codeT5 223M 45.53±0.00 49.79±0.03 9.4 54.19±0.00 57.63±0.15 6.3 58.48±0.00 61.85±0.09 5.8

codeT5 large 738M 45.99±0.65 49.87±0.66 8.4 54.09±0.69 58.27±0.47 7.7 59.29±0.57 61.73±0.46 4.1

RQ1: Cross-model Evaluation Table 6.6 demonstrates that Adacom significantly

enhances the performance of state-of-the-art comment generators with notable consistency.

On average, Adacom achieves a 14.9% improvement in the smoothing BLEU-4 score,

a 12.2% increase in the METEOR score, and a 7.4% boost in the ROUGE-L score.

Interestingly, the impact of Adacom is more pronounced on smaller models compared

to larger ones. This aligns with expectations, as smaller models tend to struggle more

with conflicting subsets of code samples, making them more receptive to Adacom ’s

optimization. Moreover, Adacom exhibits consistent performance across experiments.

The observed deviations fall within a narrow range: between 0 and 0.72 for BLEU-4, 0.08

and 0.5 for METEOR, and 0.09 and 0.59 for ROUGE-L. Adacom has improvement on

all different language models. Before the Adacom, although CodeT5-large has the best

performance, all the base-size models, including Roberta, Codebert-base, GraphCodebert,

and CodeT5-base, have a similar performance, which is close to the best. The small

models CodeBert-small and CodeT5-small clearly show much worse scores. However,

after the Adacom, all the models’ performance are increasing, especially the small-size

models, which approach the larger-size models. Due to the much shorter training time(all

epochs) and test time(per sample), the smaller models can gain much attention if they are

equipped with Adacom.

RQ2: Cross-dataset Evaluation Table 6.7 highlights that Adacom performs effectively

across various code datasets when applied to CodeT5-small, achieving an average im-

provement of 8.3% in BLEU-4, 5.0% in METEOR, and 3.2% in ROUGE-L. However,

the results reveal some variability in performance across datasets. Adacom demonstrates

significantly better enhancements on datasets such as CodeKG, Cosbench, and CSN-js.

Upon analysis, we found that datasets like CSN-python contain fewer helpful training

128

CHAPTER 6. PROGRAM ADAPTATION

Table 6.7: Boosting Performance of Adacom: Cross-Dataset Evaluation

Dataset BLEU4 METEOR ROUGE-L

before after bst (%) before after bst (%) before after bst (%)
CodeKG 34.89 49.05 40.6 43.74 56.73 29.7 50.98 61.23 20.1
Cosbench 29.22 31.31 7.15 35.86 37.07 3.37 37.23 37.48 0.67
FunCom 33.32 33.76 1.32 41.71 42.04 0.79 49.23 49.53 0.61
CSN-java 19.17 20.06 4.64 32.09 32.84 2.34 38.28 38.88 1.57
CSN-js 15.15 17.06 12.61 22.84 24.40 6.83 30.38 31.18 2.63
CSN-python 19.71 19.92 1.07 30.57 30.68 0.36 37.23 37.48 0.67
CSN-go 18.88 19.15 1.43 33.95 34.10 0.44 41.21 41.40 0.46
CSN-php 24.70 25.76 4.29 36.34 36.96 1.71 44.53 45.40 1.95
CSN-ruby 14.78 15.03 1.69 25.11 25.05 -0.24 31.77 31.94 0.54

Table 6.8: Performance Analysis: Retrieval Model vs. Semantic Embedding with Cosine
Similarity on CodeT5-Base Model

Dataset Retro CLS-Cosine Adacom
223M 223M 223M

CSN-java 20.05 20.14 20.85
CSN-js 16.15 17.35 18.81
CSN-python 19.67 19.58 20.46
CSN-go 19.46 19.12 19.61
CSN-php 24.91 26.45 26.90
CSN-ruby 14.91 14.45 15.39
overall 19.19 19.52 20.34

samples, which limits the potential for boosting model performance. Additionally, as

our hyperparameter tuning primarily focuses on optimizing BLEU scores, the BLEU-4

improvements are more pronounced compared to those of METEOR and ROUGE-L. One

practical mitigation strategy is to apply a stricter threshold for selecting helpful samples. A

higher threshold can reduce the inclusion of irrelevant training samples, thereby improving

the effectiveness of on-the-fly retraining.

RQ3: Retrieval-methods Comparison Table 6.8 illustrates that Adacom generally

outperforms retrieval-augmented approaches. Traditional retrieval-based methods struggle

to adapt the model to a specific test sample using only similar code-comment pairs. During

training, these methods remain susceptible to biases introduced by contradictory samples,

and simply appending similar examples to the input does not resolve these compromises.

In contrast, Adacom excels by adapting the model during testing. It selectively re-learns

from helpful samples while mitigating the influence of harmful ones, resulting in improved

performance tailored to individual test cases.

129

CHAPTER 6. PROGRAM ADAPTATION

Table 6.9: Cross-Domain Generalizability of Adacom: Language, Programming Language,
and Project Evaluation

Type Option BLEU4 METEOR ROUGE-L

before after bst (%) before after bst (%) before after bst (%)

Cross language T5-base 10.44 41.97 302.01 24.91 57.27 129.91 18.99 50.72 167.09
Roberta-base 6.42 37.51 484.27 10.24 42.85 318.46 11.45 38.77 238.60

Cross PL

CSN-JS 7.00 15.50 121.43 14.37 23.48 63.40 7.90 18.16 129.87
CSN-Python 7.42 12.91 73.99 16.34 22.61 38.37 8.54 16.71 95.67

CSN-Go 4.20 11.32 169.52 9.95 21.99 121.01 4.91 17.14 249.08
CSN-PHP 7.56 16.71 121.03 16.39 28.61 74.56 8.66 22.38 158.43
CSN-Ruby 7.71 9.95 29.05 16.18 20.18 24.72 8.63 13.69 58.63

Cross project CodeKG 11.52 35.19 205.47 20.82 45.57 118.88 28.03 48.64 73.53

RQ4: Generalization Evaluation Table 6.9 highlights the strong generalizability of

Adacom, demonstrating significant performance improvements across cross-language,

cross-programming-language (PL), and cross-project scenarios.

For cross-language adaptation, Adacom leverages on-the-fly retraining to adjust the

model using a small, helpful subset of the target samples. When adapting from natural

language to programming language, models like T5 and Roberta—pre-trained exclusively

on natural language—show marked performance gains, approaching the level of fine-tuned

models. This indicates that language models can bypass the resource-intensive fine-tuning

process by instead identifying a few relevant samples in the target dataset and applying

Adacom for adaptation to specific test cases.

For cross-PL generalization, we evaluated Adacom on the challenging CodeSearch-

Net dataset. The results confirm its capability to enhance performance across different

programming languages, reinforcing its adaptability in multilingual coding environments.

For cross-project scenarios, Adacom was tested on the diverse Java projects in

the CodeKG dataset. It maintained competitive performance, particularly on out-of-

distribution data, which includes code from previously unseen projects. Interestingly,

performance within the same project often exceeded baseline results, likely because fewer

projects reduced the compromises made by the large language model during training.

Overall, Adacom has proven effective in addressing distribution shifts across a variety

of challenging scenarios, making it a versatile tool for improving model robustness.

RQ5: Runtime Overhead Evaluation To evaluate the time consumption of Adacom,

we conducted an experiment using GraphCodeBERT on the CodeKG dataset, configuring

retraining parameters to include 20 epochs with the top 5 most similar training samples.

130

CHAPTER 6. PROGRAM ADAPTATION

Table 6.10: Efficiency Comparison: BLEU-4 Score Enhancement for Run-Time Overhead
with Baselines

Model Name CodeT5 CodeT5+ Adacom-small Adacom-base
Parameter Size 223M 770M 60M 223M

Windows

Time (second) 1.21 4.06 2.34 4.81
Time per sample (second) 0 2.85 1.13 3.60
Average boost BLEU score 0 0.63 0.45 1.28
Boost BLEU score per second - 22.11% 39.82% 35.56%

Ubuntu

Time (second) 0.38 1.91 1.46 3.16
Time per sample (second) 0 1.53 1.08 2.78
Average boost BLEU score 0 0.63 0.45 1.28
Boost BLEU score per second - 41.18% 41.67% 46.04%

After extensive hyperparameter ablation, we selected the CodeT5-small and CodeT5-base

models for further testing, setting the retraining parameters to 15 epochs, 3 helpful samples,

a learning rate of 5 × 10−5, and freezing the encoder along with half of the decoder.

Table 6.10 details the runtime overhead relative to the performance boost in smoothing

BLEU-4 scores, using the CodeT5-base model as the baseline. The results show that Ada-

com delivers significant performance improvements with relatively modest computational

effort. On the Windows platform, both Adacom-small and Adacom-base outperform

CodeT5+. On the Ubuntu platform, Adacom-base demonstrates superior performance

compared to CodeT5+. These findings suggest that Adacom is well-suited for practical

applications, particularly as a cost-efficient solution for enhancing the performance of

smaller models.

RQ6: Ablation study Table 6.11 highlights that relying solely on helpful comments

or standalone models, as shown in the first column, results in reduced performance for

Adacom. In contrast, the last two columns demonstrate how Adacom effectively integrates

helpful samples and adapts the model, achieving improved performance. The third column

presents the results for the standalone fine-tuned CodeT5-small model. Here, the prediction

is made by directly using the comment from the most helpful sample with the highest

contribution score. Notably, Adacom, when applied to CodeT5-small, outperforms even

the standalone CodeT5+ large model, as shown in the fourth column.

6.6 Case Study
This section further demonstrates our comparison between Adacom and ChatGPT.

ChatGPT is a popular deep language model that provides a practical and intuitive explana-

131

CHAPTER 6. PROGRAM ADAPTATION

Table 6.11: Ablation Study on Adacom

Retrieved Comment Model Only Large Model Adacom-small Adacom-base
223M 223M 770M 60M 223M

CSN-java 13.18 19.17 20.83 20.06 20.85
CSN-js 13.96 15.15 17.93 17.06 18.81
CSN-python 11.70 19.71 20.47 19.92 20.46
CSN-go 11.17 18.88 19.64 19.15 19.61
CSN-php 17.47 24.70 26.39 25.76 26.90
CSN-ruby 8.91 14.78 15.63 15.03 15.39
overall 12.73 18.73 20.15 19.50 20.34

tion for any code. Generally, ChatGPT has shown its powerful capability of generating

great interpretation. Thus, we prepare 100 code examples to compare ChatGPT with

Adacom and report the following findings.

Table 6.12: We compare our AdaCom with ChatGPT for code comment generation.

Sample Test Sample1 Test Sample2 Test Sample3
Code Text public int

getDataLength()
{
return dataLength;
}

public static ClusterNode
getClusterNode(String id) {
if (id == null) {return

null;}
ClusterNode clusterNode =

null;
for (EntryType nodeType :

EntryType.values()) {
clusterNode =

clusterNodeMap.get(new
StringResourceWrapper(id,
nodeType));

if (clusterNode != null)
{
break;
}}

return clusterNode;}

public int
getRootOffset()

{
return parent.

getRootOffset()
+ getParentOffset();

}

Ground
Truth

Returns the data length Get @link ClusterNode of the resource name Get the offset of this Data item from
the start of some hierarchy of struc-
tures

Adacom returns the data length get @ link cluster node of the resource get the offset of this data item from
the start of some hierarchy of struc-
tures

ChatGPT This code snippet is a getter
method that returns the value
of the "dataLength" field of the
class.

This code snippet retrieves a ClusterNode ob-
ject associated with a given id from a map of
ClusterNode objects by iterating over the val-
ues of EntryType enum and using an object
to access the appropriate key in the clusterN-
odeMap. If the id passed as a parameter is null,
it will return null.

This code returns the offset of a node
in the root of the tree by adding the
offset of its parent to the offset of its
parent in the root.

6.6.1 Abstract versus Detailed Explanation

In this case study, we find 71% of the ChatGPT-generated comments are “monologue”.

Generally, when given a piece of code, ChatGPT intends to explain it line by line, even

132

CHAPTER 6. PROGRAM ADAPTATION

when we ask it to answer with only one sentence. As shown in the first and second sample

in Table 6.12 and all the samples in Table 6.13, ChatGPT explains the code in a very

detailed way but in one sentence. ChatGPT usually translates the code line by line and

follows a structure like "defines a method called X," "takes X and X as parameters," or

"returns the X object." We deem this helpful for novice programmers while not necessary

for a senior software engineer who may need to know the brief function of the code.

Many researchers are working on a deep language model for general comment generation.

Nevertheless, software engineering tasks (e.g., software debugging, repair, and testing)

might require task-specific comment generation. Thus, we foresee that customized small-

to medium-sized comment generators in the integrated development environment (IDE)

could have an advantage over a general-purposed large model.

6.6.2 Explicit and Implicit Mistakes

However, after we manually compare 100 examples between ChatGPT and Adacom,

we find 71% of the prediction of ChatGPT suffers the verbose problem while software

engineers need the comment to be more abstract and concise. Moreover, we find that

ChatGPT still makes mistakes. However, its latent mistakes are more inclined to hide with

its eloquent appearance. In this study, we label 26% samples as plausible and misleading

to the users. Table 6.14 and the third piece of code in Table 6.12 showcases four examples.

The explanation is misleading compared to the ground-truth comment, especially for

programmers with little expertise in the domain. In contrast, the mistakes made by the

classical comment generator are easier to detect. We foresee that a differential testing

technique for comment generators can be applied to compare with multiple generators,

including classical comment generators and large language models such as ChatGPT, to

help programmers in practice.

These weaknesses are also reported on the official website [153]. We show three

examples in the 6.12. The first and second samples show that ChatGPT gives a correct but

lengthy answer, and the longer the comment, the more complex the code. ChatGPT almost

follows each code line and generates comments one by one but lacks global thinking

of the whole code snippet. The third sample shows that ChatGPT sometimes gives a

well-organized natural language description but incorrect comments. The comment of

ChatGPT misuses the "root" information while the code gets the offset from the start of

133

CHAPTER 6. PROGRAM ADAPTATION

some hierarchy of structures but maybe not the root. Overall, Adacom can give more

concise and abstract comments with the helpful sample set to help users understand the

prediction of the large language models.

Table 6.13: The predictions of ChatGPT are more verbose compared to AdaCom’s and
the ground truth.

Sample Test Sample1 Test Sample2 Test Sample3
Code Text public boolean

isEmpty() {
return size
== 0;

}

public okhttp3.Call
createUsersWithArrayInputAsync

(List<User> body,
final ApiCallback<Void>

_callback) throws
ApiException {
okhttp3.Call localVarCall
= createUsers(body,
_callback);
localVarApiClient.
executeAsync(localVarCall,
_callback);

return localVarCall;
}

public static String
getDefaultHost(
@Nullable String
strInterface)

throws
UnknownException {

return getDefaultHost
(strInterface, null,
false);

}

Ground
Truth

Returns true if the array is
empty.

Creates list of users with given input array (asyn-
chronously).

Returns the default (first) host name
associated by the default nameserver
with the address bound to the specified
network interface.

AdaCom Returns true if the array is
empty.

Creates list of users with the given input array
asynchronously

Returns the default (first) host name
associated by the provided nameserver
with the address bound to the specified
network interface

ChatGPT This code snippet defines
a method that returns a
boolean indicating whether
the collection is empty or
not by checking if the size
of the collection is equal to
zero.

This code defines a public method called "crea-
teUsersWithArrayInputAsync" that takes a list of
"User" objects and an "ApiCallback" object as
parameters, validates the input before making an
asynchronous call, and returns an okhttp3 Call
object.

This code defines a method called "get-
DefaultHost" which takes a single pa-
rameter "strInterface" and returns the
default host for that interface, poten-
tially throwing an exception if the host
is unknown.

6.7 Threats to Validity
Scalability Adacom requires additional time for model adaptation, particularly when

dealing with billion-parameter models. To address this, freezing techniques are essential,

specifically by freezing the encoder’s parameters and selectively training only a subset of

the decoder’s parameters.

Construct Validity Adacom relies on the assumption that it can identify helpful

examples in the training dataset using two defined metrics to improve model performance.

However, certain test cases may lack any relevant or helpful examples, and these are

excluded from consideration. Additionally, there is a possibility that the proposed method

might inadvertently select harmful samples. This limitation emphasizes the need for

134

CHAPTER 6. PROGRAM ADAPTATION

Table 6.14: The ChatGPT gives incorrect predictions compared to AdaCom’s and the
ground truth.

Sample Test Sample1 Test Sample2 Test Sample3
Code Text public void stop

() {
if (this.started)

{
this.started =

false;
this.cumulate

+= System.
nanoTime() -
this.last;
}

}

public static _Fields
findByThriftIdOrThrow
(int fieldId) {

_Fields fields =
findByThriftId(
fieldId);
if (fields == null
)

throw new
IllegalArgument

Exception("Field " +
fieldId + " doesn’
t exist!");
return fields;

}

protected DatanodeInfo
takeNodeOutofService(int
nnIndex,

String datanodeUuid,
long maintenanceExpirationInMS,
List<DatanodeInfo>
decommissionedNodes,
Map<DatanodeInfo, Long>
inMaintenanceNodes,
AdminStates waitForState)
throws IOException {

return takeNodeOutofService(
nnIndex, (datanodeUuid !=
null ?

Lists.newArrayList(
datanodeUuid) : null),
maintenanceExpirationInMS,
decommissionedNodes,
inMaintenanceNodes,
waitForState).get(0);

}

Ground
Truth

Stop the timer. Note: No
effect if timer is already
stopped.

Find the _Fields constant that
matches fieldId, throwing an excep-
tion if it is not found.

Decommission or perform Maintenance for DataN-
odes and wait for them to reach the expected state.

AdaCom Stop the timer Find the fields that matches field id,
throwing an exception if it is not
found

Decommission or perform maintenance for data nodes
and wait to reach the expected state

ChatGPT This code is stopping a cur-
rently running process and
updating the cumulative time
spent running by adding the
difference between the cur-
rent time and the last time the
process was started.

This code is a method for finding
a field in a thrift object by its ID
and throwing an exception if it is
not found.

This code takes a node out of service by calling an-
other method, "takeNodeOutofService," with the given
arguments and returns the first element of the list re-
turned by that method.

diverse and comprehensive training datasets that encompass a wide range of projects and

scenarios.

Internal Validity We also examined scenarios where Adacom exhibits limited effec-

tiveness. One issue arises from overfitting during retraining. As shown in Table 6.15,

even when Adacom correctly identifies a useful reference chelp, it struggles to determine

the optimal extent to which the comment generator should learn from that reference. For

instance, in the example, Adacom retrains the deep comment generator for 15 epochs, but

the optimal stopping point occurs at epoch 11. Stopping earlier would have yielded higher

accuracy and reduced runtime.

To address this, Adacom could present candidates to users, enabling them to select

and use helpful samples to better interpret the model’s behavior. Future work will focus

on refining the relationship between the performance metrics and the stopping criteria for

135

CHAPTER 6. PROGRAM ADAPTATION

Table 6.15: Illustration of Potential Overfitting in Adacom

Sample Target Test Sample Harmful Training Sample Helpful Training Sample
Code ReceiptViewModel

purchase(...) {
Db.User user = Db.
getInstance().
findUserByUserName
(userName);
if (user == null)
{
...

}
Db.Account account
= findAccount(
user);
return purchase(
user, account,
itemName);

}

String receiveRequest(
Object...
parameters)
throws

DbUnavailableException
{

var id =
generateId();
var req = new
PaymentRequest(id,
(float)
parameters[0]);
return updateDb(
req);

}

ReceiptViewModel
purchase(...) {

Db.Product item
= Db.get().
find(itemName);

if (item ==
null) {
...

}
Receipt receipt
= ...;

if (transaction
== null) {
...

}
return receipt;

}

Ground
Truth

domain purchase with userName
and itemName, with validation for
userName

public method which will receive
request from @link com. iluwatar.
commander. Commander

domain purchase with user, ac-
count and itemName, with val-
idation for whether product is
out of stock and whether user
has insufficient funds in the ac-
count

Origin (BLEU 16.78) register purchase with user name
Adacom
Epoch8

(BLEU 66.43) domain purchase with user name and item name , with validation for whether user is
enabled or not

Adacom
Epoch11

(BLEU 84.84) domain purchase with user name and item name , with validation for the account

Adacom
Epoch15

(BLEU 47.79) domain purchase with user , account and item name , with validation for whether user is
enabled or not

on-the-fly retraining, aiming to improve the process further.

136

CHAPTER 7. CONCLUSION AND FUTURE WORK

Chapter 7

Conclusion and Future Work
This chapter concludes the thesis by summarizing its contributions and outlining

directions for future research. Section 7.1 summarizes the main contributions of this thesis,

and Section 7.2 discusses some ongoing and future directions.

7.1 Summary of the Thesis

This thesis includes program refinement, documentation, evolution, and real-time

adaptation throughout the key phases of the software development life cycle. We built

several tools and conducted comprehensive experiments to show their effectiveness.

First, we introduced LLM4PR, a system designed for the automated generation of

verified code, integrating LLMs and formal methods like automated theorem provers. Our

method transforms formal specifications into executable code through a process guided

by refinement laws and enhanced interaction with LLMs. We have extended the formal

refinement calculus to better accommodate the informal nature of LLMs by constructing

active prompts that effectively guide the model. LLM4PR leverages the capabilities of

GPT-4 to predict the applicable refinement laws intelligently and to assist in generating

code suitable for formal verification. Following the code generation phase, LLM4PR

employs ATPs to rigorously verify the refinement conditions and ensure that the generated

code adheres to the specified preconditions and postconditions. Our experimental results

validate that LLM4PR not only enhances the robustness of the generated code but also

significantly improves correctness over existing state-of-the-art LLM-based approaches.

This demonstrates LLM4PR’s effectiveness in producing high-quality, verified software,

marking a substantial advancement in the field of automated code generation.

137

CHAPTER 7. CONCLUSION AND FUTURE WORK

Secondly, we propose CProSum, including a graph-structure context extractor, a

structure-centric context evaluator, and a context-aware comment generator to enhance

existing code summarization techniques regarding their code context. We transform the

whole code project into a code knowledge graph and then use a context-evaluating and

prompting framework adaptable to encoder-decoder summarization architectures. We

further build a large graph dataset to facilitate the training and application of retrieved

augmented generator-based solutions. Our extensive experiment shows that the graph

contextual information is helpful for both selecting the related code examples and boosting

the performance of comment generation. Our approach outperforms existing baselines

by effectively utilizing structural and contextual information. Moreover, our experiment

shows that all existing techniques can be further improved with a graph-based design.

Thirdly, we present CoEdPilot, a comprehensive end-to-end framework designed to

interactively generate code edits by coordinating a series of neural transformers, each

responsible for analyzing previous edits, subsequent edits, and generating new edits. Our

extensive experimental results demonstrate that CoEdPilot excels in accurately predicting

edit locations and generating viable edit options. Additionally, this framework enhances

the capabilities of several leading-edge edit generators, significantly boosting their per-

formance. A user study confirms that when integrated as a VS Code plugin, CoEdPilot

effectively aids programmers in real-world coding tasks, streamlining the editing process

and improving efficiency.

Finally, we presented Adacom, a novel solution of real-time performance enhancement

for neural network models. We observed that models tend to compromise the performance

of individual samples to improve the overall generalization ability, as the conflicting effect

is universal across different training sets. To address this issue, Adacom is designed to

further improve the model’s performance on specific samples by utilizing the potential

of the training set. We build the influence graph and estimate the contribution of training

samples to generate a helpful set for each test sample. Once the model is deployed, we

retrain it on the fly with the selected helpful training samples for each test sample and

generate the code comment based on that new model. Extensive experiments have shown

that Adacom can effectively improve the performance of the code comment generation on

diverse datasets, programming languages, and different deep language models. Further,

Adacom also shows its decent generalizability in cross-language, cross-programming-

language, and cross-project settings.

138

CHAPTER 7. CONCLUSION AND FUTURE WORK

7.2 On-going and Future Works
We are actively developing LLM with formal methods for trustworthy LLM-assistant

tools. This section discusses some ongoing and future works surrounding the LLM and

formal methods. The road map of the formal methods agents with LLM is published on

the arxiv [231].

7.2.1 Tool Development

To bridge the gap between theoretical advancements and practical applications, de-

veloping and deploying our tools in real-world scenarios is a crucial part of our future

work. We have collaborated with companies to deploy our tools as industrial products.

We are committed to enhancing tools that leverage the latest innovations in LLMs and

formal methods and are built more robustly and reliably for use in diverse environments.

A key focus of our upcoming initiatives will be to address and mitigate the problem

of over-fitting. This involves refining our methods to enhance the understanding and

scientific control of the adaptation and fine-tuning process, ensuring that our models

generalize well and remain effective under varied conditions. By doing so, we aim to

provide tools that perform well on laboratory benchmark tests and deliver consistent and

reliable performance in real-world applications.

7.2.2 Program Generation Techniques

Developing new program generation algorithms and refining related techniques re-

mains our top priority. We have identified several promising directions to guide our future

efforts:

Expansion of Refinement Laws and Program Structures Expanding the scope of

refinement laws and program structures is a strategic priority to address more complex

and diverse software engineering challenges. By deepening our engagement with formal

methods and broadening the applicability of our tools, we strive to handle intricate

questions and specifications that arise in industrial software projects. Enhancing these

tools will facilitate the development of highly sophisticated, automated solutions that push

the boundaries of current technology. We envision these formal method-based tools as

becoming crucial in the software industry’s evolution, delivering solutions that are not

139

CHAPTER 7. CONCLUSION AND FUTURE WORK

only technically robust but also reliable and indispensable for developers across various

domains. This advancement will solidify our contribution to setting new standards for

accuracy and dependability in software development.

Development of a Larger Knowledge Graph The construction of an expanded knowl-

edge graph represents a crucial step forward in our approach to software development. This

enhanced knowledge graph will enable a deeper and more detailed analysis of software

projects by mapping out a more extensive graph of code dependencies and interactions.

Such an expansion will significantly improve our understanding of the nuanced rela-

tionships within codebases, facilitating more informed decision-making in the program

generation process. The larger knowledge graph will boost the accuracy and effectiveness

of our algorithms, enabling them to handle increasingly complex scenarios with greater

precision. Through this advanced tool, we aim to revolutionize how developers interact

with and manage large-scale software projects, ultimately leading to more robust and

efficient software systems.

Innovation in Future Code Edits We are exploring new methodologies for predicting

and implementing code edits. Incorporating real-time analytics into development tools

can provide immediate insights into how code changes affect software performance and

stability. By analyzing code behavior in real-time, developers can receive proactive

suggestions for necessary edits before issues become problematic, effectively reducing

debugging time and enhancing code quality. Drawing insights from version control

systems can help predict future code edits by analyzing historical data on code changes.

By understanding patterns in how software has evolved, predictive models can suggest

future changes that align with long-term development trends or correct recurring issues.

Advancement in Adaptation Methods Our goal is to significantly advance the adapta-

tion methods used within our tool sets so that they more effectively align with the dynamic

and ever-evolving nature of software development projects. By meticulously refining

these methods, we aim to equip our tools with the latest real-time adaptation techniques

to seamlessly adjust to changes in project requirements and shifts in the technological

landscape. This enhancement will ensure that the programs generated by our tools meet

current needs and adapt proactively to future demands, maintaining their relevance and

140

CHAPTER 7. CONCLUSION AND FUTURE WORK

effectiveness over time. This strategic improvement will enable developers to manage and

anticipate changes more efficiently, thus fostering more resilient and adaptable software

solutions.

7.2.3 LLM Agents

LLM Agents are advanced AI systems that utilize large language models to interpret

and generate human language with a high degree of contextual understanding and sophisti-

cation. These agents maintain the continuity of conversations, recall past interactions, and

dynamically adjust their responses in varying tones and styles to suit different situations.

LLM agents’ advanced capabilities make them highly effective for complex tasks such as

problem-solving and engaging in nuanced dialogues. Consequently, they are increasingly

utilized in diverse fields, including data analysis, education, and healthcare. Moreover,

LLM Agents possess a degree of autonomy, enabling them to self-navigate within the

scope of their programming. This autonomous capability allows them to effectively as-

sist human users by streamlining productivity, alleviating mundane tasks, and tackling

complex challenges. However, despite their sophisticated linguistic abilities, LLM Agents

are vulnerable to misinformation, inherent biases, privacy breaches, and the potential

propagation of harmful content. We are building the PAT [190] based LLM agent to

remedy these weaknesses. PAT is a toolkit for flexible and efficient system analysis under

fairness. It proposes a unified algorithm to effectively model check systems with a variety

of fairness in different settings. We add another safety layer using PAT to recognize the

potential for misuse and the hallucination of the LLM agents for code generation, mitigate

the risk of spreading misinformation, and ensure responses are contextually appropriate

and correct.

Through these directions, we seek to significantly enhance our capabilities in program

generation, setting new benchmarks for innovation and reliability in software develop-

ment tools. These efforts will address current challenges and pave the way for future

advancements in the field.

141

BIBLIOGRAPHY

Bibliography
[1] P. Aggarwal, A. Madaan, Y. Yang, and Mausam, “Let’s sample step by step:

Adaptive-consistency for efficient reasoning and coding with LLMs”, in Pro-

ceedings of the 2023 Conference on Empirical Methods in Natural Language

Processing, H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association for

Computational Linguistics, Dec. 2023, pp. 12 375–12 396. [Online]. Available:

https://aclanthology.org/2023.emnlp-main.761.

[2] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified pre-training

for program understanding and generation”, in Proceedings of the 2021 Con-

ference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Online: Association for Compu-

tational Linguistics, Jun. 2021, pp. 2655–2668. [Online]. Available: https:

//aclanthology.org/2021.naacl-main.211.

[3] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A transformer-based

approach for source code summarization”, ACL, 2020.

[4] D. Alfageh, H. Alhakami, A. Baz, E. Alanazi, and T. Alsubait, “Clone detection

techniques for javascript and language independence”, International Journal of

Advanced Computer Science and Applications, vol. 11, no. 4, 2020.

[5] K. Ali and O. Lhoták, “Averroes: Whole-program analysis without the whole

program”, in European Conference on Object-Oriented Programming, Springer,

2013, pp. 378–400.

[6] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention network for

extreme summarization of source code”, in International conference on machine

learning, PMLR, 2016, pp. 2091–2100.

[7] U. Alon, S. Brody, O. Levy, and E. Yahav, “Code2seq: Generating sequences

from structured representations of code”, ICLR, 2019.

142

https://aclanthology.org/2023.emnlp-main.761
https://aclanthology.org/2021.naacl-main.211
https://aclanthology.org/2021.naacl-main.211

BIBLIOGRAPHY

[8] J. Alpuim and W. Swierstra, “Embedding the refinement calculus in Coq”, Science

of Computer Programming, vol. 164, pp. 37–48, 2018, Special issue of selected

papers from FLOPS 2016, ISSN: 0167-6423.

[9] C. Angiuli, E. Cavallo, K.-B. Hou (Favonia), R. Harper, and J. Sterling, “The

RedPRL proof assistant (invited paper)”, Electronic Proceedings in Theoretical

Computer Science, vol. 274, pp. 1–10, Jul. 2018, ISSN: 2075-2180. [Online].

Available: http://dx.doi.org/10.4204/EPTCS.274.1.

[10] R.-J. J. Back, A. Akademi, J. V. Wright, F. B. Schneider, and D. Gries, “Refinement

Calculus: A Systematic Introduction”, 1st. Berlin, Heidelberg: Springer-Verlag,

1998, ISBN: 0387984178.

[11] R.-J. R. Back and J. von Wright, “Refinement concepts formalised in higher order

logic”, Formal Aspects of Computing, vol. 2, pp. 247–272, 1990.

[12] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evaluation with

improved correlation with human judgments”, in Proceedings of the acl workshop

on intrinsic and extrinsic evaluation measures for machine translation and/or

summarization, 2005, pp. 65–72.

[13] A. Bansal, S. Haque, and C. McMillan, “Project-level encoding for neural source

code summarization of subroutines”, in 2021 IEEE/ACM 29th International Con-

ference on Program Comprehension (ICPC), IEEE, 2021, pp. 253–264.

[14] B. Barras, S. Boutin, C. Cornes, J. Courant, Y. Coscoy, D. Delahaye, D. de

Rauglaudre, J.-C. Filliâtre, E. Giménez, H. Herbelin, et al., “The Coq proof

assistant reference manual”, INRIA, version, vol. 6, no. 11, 1999.

[15] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A.

Reynolds, and C. Tinelli, “Cvc4”, in Computer Aided Verification: 23rd Interna-

tional Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings

23, Springer, 2011, pp. 171–177.

[16] L. Ben Allal, N. Muennighoff, L. Kumar Umapathi, B. Lipkin, and L. von Werra,

“A framework for the evaluation of code generation models”, https://github.

com/bigcode-project/bigcode-evaluation-harness, 2022.

143

http://dx.doi.org/10.4204/EPTCS.274.1
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness

BIBLIOGRAPHY

[17] M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, L. Gianinazzi, J. Gajda, T.

Lehmann, M. Podstawski, H. Niewiadomski, P. Nyczyk, and T. Hoefler, “Graph of

Thoughts: Solving Elaborate Problems with Large Language Models”, Proceed-

ings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 16, pp. 17 682–

17 690, Mar. 2024. [Online]. Available: https://ojs.aaai.org/index.

php/AAAI/article/view/29720.

[18] L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting is programming: A

query language for large language models”, Proc. ACM Program. Lang., vol. 7,

no. PLDI, Jun. 2023. [Online]. Available: https://doi.org/10.1145/

3591300.

[19] L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting is programming: A

query language for large language models”, Proc. ACM Program. Lang., vol. 7,

no. PLDI, Jun. 2023. [Online]. Available: https://doi.org/10.1145/

3591300.

[20] S. Böhme and T. Nipkow, “Sledgehammer: Judgement day”, in Automated Rea-

soning: 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July

16-19, 2010. Proceedings 5, Springer, 2010, pp. 107–121.

[21] T. Bordis, T. Runge, A. Kittelmann, and I. Schaefer, “Correctness-by-construction:

An overview of the corc ecosystem”, Ada Lett., vol. 42, no. 2, pp. 75–78, Apr.

2023, ISSN: 1094-3641. [Online]. Available: https://doi.org/10.1145/

3591335.3591343.

[22] M. Bowers, T. X. Olausson, L. Wong, G. Grand, J. B. Tenenbaum, K. Ellis, and

A. Solar-Lezama, “Top-down synthesis for library learning”, Proc. ACM Program.

Lang., vol. 7, no. POPL, Jan. 2023. [Online]. Available: https://doi.org/

10.1145/3571234.

[23] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-

lakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot

learners”, Advances in neural information processing systems, vol. 33, pp. 1877–

1901, 2020.

144

https://ojs.aaai.org/index.php/AAAI/article/view/29720
https://ojs.aaai.org/index.php/AAAI/article/view/29720
https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591300
https://doi.org/10.1145/3591335.3591343
https://doi.org/10.1145/3591335.3591343
https://doi.org/10.1145/3571234
https://doi.org/10.1145/3571234

BIBLIOGRAPHY

[24] M. Brunsfeld, P. Thomson, A. Hlynskyi, J. Vera, P. Turnbull, T. Clem, D. Creager,

A. Helwer, R. Rix, H. van Antwerpen, M. Davis, Ika, T.-A. Nguyen, S. Brunk,

N. Hasabnis, bfredl, M. Dong, V. Panteleev, ikrima, S. Kalt, K. Lampe, A. Pinkus,

M. Schmitz, M. Krupcale, narpfel, S. Gallegos, V. Martí, Edgar, and G. Fraser,

“Tree-sitter/tree-sitter: V0.20.7”, version v0.20.7, Sep. 2022. [Online]. Available:

https://doi.org/10.5281/zenodo.7045041.

[25] N. D. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning for code

retrieval and summarization via semantic-preserving transformations”, in Pro-

ceedings of the 44th International ACM SIGIR Conference on Research and

Development in Information Retrieval, 2021, pp. 511–521.

[26] M. Butler and T. Långbacka, “Program derivation using the refinement calcula-

tor”, in Theorem Proving in Higher Order Logics, G. Goos, J. Hartmanis, J. van

Leeuwen, J. von Wright, J. Grundy, and J. Harrison, Eds., Berlin, Heidelberg:

Springer Berlin Heidelberg, 1996, pp. 93–108, ISBN: 978-3-540-70641-0.

[27] Y. Cai, Y. Lin, C. Liu, J. Wu, Y. Zhang, Y. Liu, Y. Gong, and J. S. Dong,

“On-the-fly adapting code summarization on trainable cost-effective language

models”, in Advances in Neural Information Processing Systems, A. Oh, T.

Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36,

Curran Associates, Inc., 2023, pp. 56 660–56 672. [Online]. Available: https:

//proceedings.neurips.cc/paper_files/paper/2023/file/

b16e6de5fbbdcb2df237aa66b302bc17-Paper-Conference.pdf.

[28] D. Carrington, I. Hayes, R. Nickson, G. Watson, and J. Welsh, “A program

refinement tool”, Formal Aspects of Computing, vol. 10, pp. 97–124, 1998.

[29] S. Chakraborty and B. Ray, “On multi-modal learning of editing source code”, in

2021 36th IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE), Los Alamitos, CA, USA: IEEE Computer Society, 2021, pp. 443–455.

[Online]. Available: https://doi.ieeecomputersociety.org/10.

1109/ASE51524.2021.9678559.

[30] S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray, “Codit: Code editing with

tree-based neural models”, IEEE Transactions on Software Engineering, vol. 48,

no. 4, pp. 1385–1399, 2022.

145

https://doi.org/10.5281/zenodo.7045041
https://proceedings.neurips.cc/paper_files/paper/2023/file/b16e6de5fbbdcb2df237aa66b302bc17-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b16e6de5fbbdcb2df237aa66b302bc17-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b16e6de5fbbdcb2df237aa66b302bc17-Paper-Conference.pdf
https://doi.ieeecomputersociety.org/10.1109/ASE51524.2021.9678559
https://doi.ieeecomputersociety.org/10.1109/ASE51524.2021.9678559

BIBLIOGRAPHY

[31] Y. Charalambous, N. Tihanyi, R. Jain, Y. Sun, M. A. Ferrag, and L. C. Cordeiro,

“A new era in software security: Towards self-healing software via large language

models and formal verification”, 2023. arXiv: 2305.14752 [cs.SE].

[32] B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou, and W. Chen, “Codet:

Code generation with generated tests”, arXiv preprint arXiv:2207.10397, 2022.

[33] H. Chen, Y. Wang, K. Zheng, W. Li, C.-T. Chang, A. P. Harrison, J. Xiao, G. D.

Hager, L. Lu, C.-H. Liao, et al., “Anatomy-aware siamese network: Exploiting

semantic asymmetry for accurate pelvic fracture detection in x-ray images”, in

Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August

23–28, 2020, Proceedings, Part XXIII 16, Springer, 2020, pp. 239–255.

[34] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H.

Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M.

Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov,

A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings,

M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol,

A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C.

Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M.

Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei,

S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating large language models

trained on code”, 2021. arXiv: 2107.03374 [cs.LG].

[35] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for

statistical machine translation”, 2014. arXiv: 1406.1078 [cs.CL].

[36] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the proper-

ties of neural machine translation: Encoder-decoder approaches”, arXiv preprint

arXiv:1409.1259, 2014.

[37] K. Claessen, R. Hähnle, and J. Mårtensson, “Verification of hardware systems

with first-order logic”, in Proceedings of the CADE-18 Workshop-Problem and

Problem Sets for ATP, Citeseer, 2002.

146

https://arxiv.org/abs/2305.14752
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1406.1078

BIBLIOGRAPHY

[38] C. B. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sundaresan,

“Pymt5: Multi-mode translation of natural language and python code with trans-

formers”, arXiv preprint arXiv:2010.03150, 2020.

[39] CodeKG, “Codekg”, 2022. [Online]. Available: https://sites.google.

com/view/code-kg/home.

[40] “Coedpilot website”, https://sites.google.com/view/coedpilot/

home, 2024.

[41] “Crossentropyloss — PyTorch 2.1 documentation”, https://pytorch.org/

docs/stable/generated/torch.nn.CrossEntropyLoss.html,

2023.

[42] Q. Cutts, R. Connor, G. Michaelson, and P. Donaldson, “Code or (not code)

separating formal and natural language in cs education”, in Proceedings of the 9th

Workshop in Primary and Secondary Computing Education, 2014, pp. 20–28.

[43] Ł. Czajka and C. Kaliszyk, “Hammer for Coq: Automation for dependent type

theory”, Journal of automated reasoning, vol. 61, pp. 423–453, 2018.

[44] H. Daumé III and E. Brill, “Web search intent induction via automatic query

reformulation”, in Proceedings of HLT-NAACL 2004: Short Papers, 2004, pp. 49–

52.

[45] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver”, in International

conference on Tools and Algorithms for the Construction and Analysis of Systems,

Springer, 2008, pp. 337–340.

[46] B. Delaware, C. Pit-Claudel, J. Gross, and A. Chlipala, “Fiat: Deductive synthesis

of abstract data types in a proof assistant”, in Proceedings of the 42Nd Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

ser. POPL ’15, Mumbai, India: ACM, 2015, pp. 689–700, ISBN: 978-1-4503-

3300-9. [Online]. Available: http://doi.acm.org/10.1145/2676726.

2677006.

[47] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: A theorem prover for program

checking”, J. ACM, vol. 52, no. 3, pp. 365–473, May 2005, ISSN: 0004-5411.

[Online]. Available: https://doi.org/10.1145/1066100.1066102.

147

https://sites.google.com/view/code-kg/home
https://sites.google.com/view/code-kg/home
https://sites.google.com/view/coedpilot/home
https://sites.google.com/view/coedpilot/home
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
http://doi.acm.org/10.1145/2676726.2677006
http://doi.acm.org/10.1145/2676726.2677006
https://doi.org/10.1145/1066100.1066102

BIBLIOGRAPHY

[48] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep

bidirectional transformers for language understanding”,, J. Burstein, C. Doran,

and T. Solorio, Eds., pp. 4171–4186, Jun. 2019. [Online]. Available: https:

//aclanthology.org/N19-1423.

[49] E. W. Dijkstra, E. W. Dijkstra, E. W. Dijkstra, and E. W. Dijkstra, “A discipline of

programming”, prentice-hall Englewood Cliffs, 1976, vol. 613924118.

[50] H. Ding, V. Kumar, Y. Tian, Z. Wang, R. Kwiatkowski, X. Li, M. K. Ramanathan,

B. Ray, P. Bhatia, S. Sengupta, D. Roth, and B. Xiang, “A static evaluation of code

completion by large language models”, 2023. arXiv: 2306.03203 [cs.CL].

[51] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell,

“Decaf: A deep convolutional activation feature for generic visual recognition”,

in Proceedings of the 31st International Conference on Machine Learning, E. P.

Xing and T. Jebara, Eds., ser. Proceedings of Machine Learning Research, vol. 32,

Bejing, China: PMLR, 2014, pp. 647–655. [Online]. Available: https://

proceedings.mlr.press/v32/donahue14.html.

[52] I. Dragomir, V. Preoteasa, and S. Tripakis, “The refinement calculus of reactive

systems toolset”, International Journal on Software Tools for Technology Transfer,

vol. 22, pp. 689–708, 2020.

[53] S. Duncan, A. Walker, C. DeHaan, S. Alvord, T. Cerny, and P. Tisnovsky, “Pyclone:

A python code clone test bank generator”, in Information Science and Applications:

Proceedings of ICISA 2020, Springer, 2021, pp. 235–243.

[54] K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, A.

Solar-Lezama, and J. B. Tenenbaum, “Dreamcoder: Bootstrapping inductive pro-

gram synthesis with wake-sleep library learning”,, ser. PLDI 2021, Virtual, Canada:

Association for Computing Machinery, 2021, pp. 835–850, ISBN: 9781450383912.

[Online]. Available: https://doi.org/10.1145/3453483.3454080.

[55] J. L. Elman, “Finding structure in time”, Cognitive science, vol. 14, no. 2, pp. 179–

211, 1990.

[56] Y. Elrakaiby, A. Borgida, A. Ferrari, and J. Mylopoulos, “CaRE: A refinement

calculus for requirements engineering based on argumentation theory”, Software

and Systems Modeling, vol. 21, no. 6, pp. 2113–2132, 2022.

148

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2306.03203
https://proceedings.mlr.press/v32/donahue14.html
https://proceedings.mlr.press/v32/donahue14.html
https://doi.org/10.1145/3453483.3454080

BIBLIOGRAPHY

[57] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,

D. Jiang, et al., “Codebert: A pre-trained model for programming and natural

languages”, EMNLP, 2020.

[58] P. Fernandes, M. Allamanis, and M. Brockschmidt, “Structured neural summa-

rization”, ICLR, 2019.

[59] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program dependence graph

and its use in optimization”, ACM Transactions on Programming Languages and

Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[60] E. First, M. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof generation and

repair with large language models”, in The 31st ACM Joint European Software En-

gineering Conference and Symposium on the Foundations of Software Engineering,

2023, pp. 1229–1241.

[61] R. W. Floyd, “Assigning meanings to programs”, in Program Verification: Funda-

mental Issues in Computer Science, Springer, 1993, pp. 65–81.

[62] S. Foster, J. J. Huerta y Munive, and G. Struth, “Differential Hoare logics and

refinement calculi for hybrid systems with Isabelle/HOL”, in Relational and

Algebraic Methods in Computer Science: 18th International Conference, RAMiCS

2020, Palaiseau, France, October 26–29, 2020, Proceedings 18, Springer, 2020,

pp. 169–186.

[63] M. Fowler, “Refactoring: improving the design of existing code”, Addison-Wesley

Professional, 2018.

[64] M. Freitag and Y. Al-Onaizan, “Beam search strategies for neural machine trans-

lation”, in Proceedings of the First Workshop on Neural Machine Translation,

Vancouver: Association for Computational Linguistics, Aug. 2017, pp. 56–60.

[Online]. Available: https://aclanthology.org/W17-3207.

[65] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong, S. Yih,

L. Zettlemoyer, and M. Lewis, “Incoder: A generative model for code infilling and

synthesis”, in The Eleventh International Conference on Learning Representations,

2023.

149

https://aclanthology.org/W17-3207

BIBLIOGRAPHY

[66] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropaga-

tion”, in Proceedings of the 32nd International Conference on International Con-

ference on Machine Learning - Volume 37, ser. ICML’15, Lille, France: JMLR.org,

2015, pp. 1180–1189.

[67] H. Ganzinger, F. Pfenning, and C. Schürmann, “System description: Twelf—a

meta-logical framework for deductive systems”, in Automated Deduction—CADE-

16: 16th International Conference on Automated Deduction Trento, Italy, July

7–10, 1999 Proceedings 16, Springer, 1999, pp. 202–206.

[68] M. Geng, S. Wang, D. Dong, H. Wang, G. Li, Z. Jin, X. Mao, and X. Liao, “Large

language models are few-shot summarizers: Multi-intent comment generation via

in-context learning”, in Proceedings of the 46th IEEE/ACM International Confer-

ence on Software Engineering, ser. ICSE ’24, <conf-loc>, <city>Lisbon</city>,

<country>Portugal</country>, </conf-loc>: Association for Computing Machin-

ery, 2024. [Online]. Available: https://doi.org/10.1145/3597503.

3608134.

[69] M. Geng, S. Wang, D. Dong, H. Wang, G. Li, Z. Jin, X. Mao, and X. Liao, “Large

language models are few-shot summarizers: Multi-intent comment generation

via in-context learning”, in Proceedings of the 46th IEEE/ACM International

Conference on Software Engineering, 2024, pp. 1–13.

[70] GitHub, “GitHub Copilot”, 2023. [Online]. Available: https://github.

com/features/copilot.

[71] R. Gozalo-Brizuela and E. C. Garrido-Merchan, “Chatgpt is not all you need. a

state of the art review of large generative ai models”, arXiv preprint arXiv:2301.04655,

2023.

[72] X. Gu, H. Zhang, and S. Kim, “Deep code search”, in 2018 IEEE/ACM 40th

International Conference on Software Engineering (ICSE), IEEE, 2018, pp. 933–

944.

[73] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder: Unified cross-

modal pre-training for code representation”, arXiv preprint arXiv:2203.03850,

2022.

150

https://doi.org/10.1145/3597503.3608134
https://doi.org/10.1145/3597503.3608134
https://github.com/features/copilot
https://github.com/features/copilot

BIBLIOGRAPHY

[74] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svy-

atkovskiy, S. Fu, et al., “Graphcodebert: Pre-training code representations with

data flow”, The International Conference on Learning Representations, 2020.

[75] P. Gupta, A. Khare, Y. Bajpai, S. Chakraborty, S. Gulwani, A. Kanade, A. Rad-

hakrishna, G. Soares, and A. Tiwari, “Grace: Language models meet code edits”,

in Proceedings of the 31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2023,

New York, NY, USA: Association for Computing Machinery, 2023, pp. 1483–1495.

[Online]. Available: https://doi.org/10.1145/3611643.3616253.

[76] V. Gupta, A. Shrivastava, A. Sagar, A. Aghajanyan, and D. Savenkov, “RetroNLU:

Retrieval augmented task-oriented semantic parsing”, in Proceedings of the 4th

Workshop on NLP for Conversational AI, Dublin, Ireland: Association for Com-

putational Linguistics, May 2022, pp. 184–196. [Online]. Available: https:

//aclanthology.org/2022.nlp4convai-1.15.

[77] R. Hähnle, “Quo vadis formal verification?” In Deductive Software Verification

– The KeY Book: From Theory to Practice, W. Ahrendt, B. Beckert, R. Bubel,

R. Hähnle, P. H. Schmitt, and M. Ulbrich, Eds. Cham: Springer International Pub-

lishing, 2016, pp. 1–19, ISBN: 978-3-319-49812-6. [Online]. Available: https:

//doi.org/10.1007/978-3-319-49812-6_1.

[78] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of automated text

summarization techniques for summarizing source code”, in 2010 17th Working

Conference on Reverse Engineering, IEEE, 2010, pp. 35–44.

[79] J. M. Han, J. Rute, Y. Wu, E. W. Ayers, and S. Polu, “Proof artifact co-training for

theorem proving with language models”, arXiv preprint arXiv:2102.06203, 2021.

[80] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao, A. Zhang,

L. Zhang, et al., “Pre-trained models: Past, present and future”, AI Open, vol. 2,

pp. 225–250, 2021.

[81] S. Haque, A. LeClair, L. Wu, and C. McMillan, “Improved automatic summa-

rization of subroutines via attention to file context”, in Proceedings of the 17th

International Conference on Mining Software Repositories, 2020, pp. 300–310.

151

https://doi.org/10.1145/3611643.3616253
https://aclanthology.org/2022.nlp4convai-1.15
https://aclanthology.org/2022.nlp4convai-1.15
https://doi.org/10.1007/978-3-319-49812-6_1
https://doi.org/10.1007/978-3-319-49812-6_1

BIBLIOGRAPHY

[82] C. A. R. Hoare, “An axiomatic basis for computer programming”, Communica-

tions of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[83] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural Computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[84] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[85] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation”, in 2018

IEEE/ACM 26th International Conference on Program Comprehension (ICPC),

IEEE, 2018, pp. 200–20 010.

[86] P. Huang, H. Wu, Y. Yang, I. Daukantas, M. Wu, Y. Zhang, and C. Barrett,

“Towards efficient verification of quantized neural networks”, Proceedings of the

AAAI Conference on Artificial Intelligence, vol. 38, no. 19, pp. 21 152–21 160,

Mar. 2024. [Online]. Available: https://ojs.aaai.org/index.php/

AAAI/article/view/30108.

[87] Y. Huang, M. Wei, S. Wang, J. Wang, and Q. Wang, “Yet another combination of

ir-and neural-based comment generation”, Information and Software Technology,

vol. 152, p. 107 001, 2022.

[88] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, “Code-

SearchNet challenge: Evaluating the state of semantic code search”, arXiv preprint

arXiv:1909.09436, 2019.

[89] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source code

using a neural attention model”, in Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), 2016,

pp. 2073–2083.

[90] S. Jain and B. C. Wallace, “Attention is not explanation”, arXiv preprint arXiv:1902.10186,

2019.

[91] S. Jha, S. K. Jha, P. Lincoln, N. D. Bastian, A. Velasquez, and S. Neema, “Dehallu-

cinating large language models using formal methods guided iterative prompting”,

in 2023 IEEE International Conference on Assured Autonomy (ICAA), 2023,

pp. 149–152.

152

https://ojs.aaai.org/index.php/AAAI/article/view/30108
https://ojs.aaai.org/index.php/AAAI/article/view/30108

BIBLIOGRAPHY

[92] A. Q. Jiang, W. Li, S. Tworkowski, K. Czechowski, T. Odrzygóźdź, P. Miłoś, Y.

Wu, and M. Jamnik, “Thor: Wielding hammers to integrate language models and

automated theorem provers”, Advances in Neural Information Processing Systems,

vol. 35, pp. 8360–8373, 2022.

[93] N. Jiang, T. Lutellier, and L. Tan, “Cure: Code-aware neural machine translation

for automatic program repair”, in 2021 IEEE/ACM 43rd International Conference

on Software Engineering (ICSE), 2021, pp. 1161–1173.

[94] Z. Jiang, J. Araki, H. Ding, and G. Neubig, “How can we know when language

models know? on the calibration of language models for question answering”,

Transactions of the Association for Computational Linguistics, vol. 9, pp. 962–977,

2021.

[95] W. Jin, Y. Cai, R. Kazman, Q. Zheng, D. Cui, and T. Liu, “Enre: A tool frame-

work for extensible entity relation extraction”, in 2019 IEEE/ACM 41st Inter-

national Conference on Software Engineering: Companion Proceedings (ICSE-

Companion), 2019, pp. 67–70.

[96] W. Jin, D. Zhong, Y. Cai, R. Kazman, and T. Liu, “Evaluating the impact of

possible dependencies on architecture-level maintainability”, IEEE Transactions

on Software Engineering, pp. 1–1, 2022.

[97] S. Kabir, D. N. Udo-Imeh, B. Kou, and T. Zhang, “Is stack overflow obsolete?

an empirical study of the characteristics of chatgpt answers to stack overflow

questions”, in Proceedings of the CHI Conference on Human Factors in Computing

Systems, ser. CHI ’24, Honolulu, HI, USA: Association for Computing Machinery,

2024, ISBN: 9798400703300. [Online]. Available: https://doi.org/10.

1145/3613904.3642596.

[98] Ł. Kaiser, O. Nachum, A. Roy, and S. Bengio, “Learning to remember rare events”,

arXiv preprint arXiv:1703.03129, 2017.

[99] M. Kaufmann and J. S. Moore, “An ACL2 tutorial”, in International Conference

on Theorem Proving in Higher Order Logics, Springer, 2008, pp. 17–21.

[100] I. Keivanloo, F. Zhang, and Y. Zou, “Threshold-free code clone detection for

a large-scale heterogeneous java repository”, in 2015 IEEE 22nd International

153

https://doi.org/10.1145/3613904.3642596
https://doi.org/10.1145/3613904.3642596

BIBLIOGRAPHY

Conference on Software Analysis, Evolution, and Reengineering (SANER), IEEE,

2015, pp. 201–210.

[101] R. Kitchin and M. Dodge, “Code/space: Software and everyday life”, Mit Press,

2014.

[102] M. Kodetzki, T. Bordis, T. Runge, and I. Schaefer, “Partial proofs to optimize

deductive verification of feature-oriented software product lines”, in Proceedings

of the 18th International Working Conference on Variability Modelling of Software-

Intensive Systems, ser. VaMoS ’24, Bern, Switzerland: Association for Computing

Machinery, 2024, pp. 17–26, ISBN: 9798400708770. [Online]. Available: https:

//doi.org/10.1145/3634713.3634714.

[103] M. A. Köhl, “An executable structural operational formal semantics for Python”,

2021. arXiv: 2109.03139 [cs.PL].

[104] L. Kovács and A. Voronkov, “First-order theorem proving and vampire”, in

International Conference on Computer Aided Verification, Springer, 2013, pp. 1–

35.

[105] G. Lample and A. Conneau, “Cross-lingual language model pretraining”, 2019.

arXiv: 1901.07291 [cs.CL].

[106] G. Lample, T. Lacroix, M.-A. Lachaux, A. Rodriguez, A. Hayat, T. Lavril, G.

Ebner, and X. Martinet, “Hypertree proof search for neural theorem proving”,

Advances in Neural Information Processing Systems, vol. 35, pp. 26 337–26 349,

2022.

[107] T. D. LaToza and B. A. Myers, “Developers ask reachability questions”, in Pro-

ceedings of the 32Nd ACM/IEEE International Conference on Software Engineering-

Volume 1, 2010, pp. 185–194.

[108] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code summarization

via a graph neural network”, in Proceedings of the 28th International Conference

on Program Comprehension, 2020, pp. 184–195.

[109] A. LeClair, S. Jiang, and C. McMillan, “A neural model for generating natural lan-

guage summaries of program subroutines”, in 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE), IEEE, 2019, pp. 795–806.

154

https://doi.org/10.1145/3634713.3634714
https://doi.org/10.1145/3634713.3634714
https://arxiv.org/abs/2109.03139
https://arxiv.org/abs/1901.07291

BIBLIOGRAPHY

[110] A. LeClair and C. McMillan, “Recommendations for datasets for source code

summarization”, in Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T.

Solorio, Eds., Minneapolis, Minnesota: Association for Computational Linguistics,

Jun. 2019, pp. 3931–3937. [Online]. Available: https://aclanthology.

org/N19-1394.

[111] T. Lecomte, “Atelier b”, Formal Methods Applied to Complex Systems: Implemen-

tation of the B Method, pp. 35–46, 2014.

[112] J. Li, G. Li, Z. Li, Z. Jin, X. Hu, K. Zhang, and Z. Fu, “Codeeditor: Learning to

edit source code with pre-trained models”, ACM Trans. Softw. Eng. Methodol.,

vol. 32, no. 6, 2023, ISSN: 1049-331X. [Online]. Available: https://doi.

org/10.1145/3597207.

[113] J. Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, “Editsum: A retrieve-and-edit

framework for source code summarization”, in 2021 36th IEEE/ACM International

Conference on Automated Software Engineering (ASE), IEEE, 2021, pp. 155–166.

[114] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone,

C. Akiki, J. Li, J. Chim, et al., “Starcoder: May the source be with you!” arXiv

preprint arXiv:2305.06161, 2023.

[115] Z. Li, Y. Wu, B. Peng, X. Chen, Z. Sun, Y. Liu, and D. Yu, “Secnn: A seman-

tic cnn parser for code comment generation”, Journal of Systems and Software,

vol. 181, p. 111 036, 2021, ISSN: 0164-1212. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0164121221001333.

[116] Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, D. Majumder, J. Green, A.

Svyatkovskiy, S. Fu, and N. Sundaresan, “Automating code review activities by

large-scale pre-training”, in Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engi-

neering, ser. ESEC/FSE 2022, New York, NY, USA: Association for Computing

Machinery, 2022, pp. 1035–1047, ISBN: 9781450394130. [Online]. Available:

https://doi.org/10.1145/3540250.3549081.

155

https://aclanthology.org/N19-1394
https://aclanthology.org/N19-1394
https://doi.org/10.1145/3597207
https://doi.org/10.1145/3597207
https://www.sciencedirect.com/science/article/pii/S0164121221001333
https://www.sciencedirect.com/science/article/pii/S0164121221001333
https://doi.org/10.1145/3540250.3549081

BIBLIOGRAPHY

[117] B. Y. Lin, W. Zhou, M. Shen, P. Zhou, C. Bhagavatula, Y. Choi, and X. Ren, “Com-

mongen: A constrained text generation challenge for generative commonsense

reasoning”, arXiv preprint arXiv:1911.03705, 2019.

[118] B. Lin, S. Wang, Z. Liu, Y. Liu, X. Xia, and X. Mao, “Cct5: A code-change-

oriented pre-trained model”, arXiv preprint arXiv:2305.10785, 2023.

[119] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries”, in

Text Summarization Branches Out, Barcelona, Spain: Association for Compu-

tational Linguistics, Jul. 2004, pp. 74–81. [Online]. Available: https : / /

aclanthology.org/W04-1013.

[120] C.-Y. Lin and F. J. Och, “ORANGE: A method for evaluating automatic evaluation

metrics for machine translation”, in COLING 2004: Proceedings of the 20th

International Conference on Computational Linguistics, Geneva, Switzerland:

COLING, 2004, pp. 501–507. [Online]. Available: https://aclanthology.

org/C04-1072.

[121] Y. Lin, X. Peng, Z. Xing, D. Zheng, and W. Zhao, “Clone-based and interactive

recommendation for modifying pasted code”, in Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering, 2015, pp. 520–531.

[122] W. Ling, P. Blunsom, E. Grefenstette, K. M. Hermann, T. Kočiský, F. Wang, and A.

Senior, “Latent predictor networks for code generation”, in Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), Berlin, Germany: Association for Computational Linguistics, Aug. 2016,

pp. 599–609. [Online]. Available: https://aclanthology.org/P16-

1057.

[123] C. Liu, Y. Cai, Y. Lin, Y. Huang, Y. Pei, B. Jiang, P. Yang, J. S. Dong, and H.

Mei, “Coedpilot: Recommending code edits with learned prior edit relevance,

project-wise awareness, and interactive nature”,, 2024.

[124] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by ChatGPT re-

ally correct? rigorous evaluation of large language models for code generation”, in

Thirty-seventh Conference on Neural Information Processing Systems, 2023. [On-

line]. Available: https://openreview.net/forum?id=1qvx610Cu7.

156

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/C04-1072
https://aclanthology.org/C04-1072
https://aclanthology.org/P16-1057
https://aclanthology.org/P16-1057
https://openreview.net/forum?id=1qvx610Cu7

BIBLIOGRAPHY

[125] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt,

and predict: A systematic survey of prompting methods in natural language pro-

cessing”, 2021. arXiv: 2107.13586 [cs.CL].

[126] S. Liu, Y. Chen, X. Xie, J. Siow, and Y. Liu, “Retrieval-augmented generation for

code summarization via hybrid gnn”, arXiv preprint arXiv:2006.05405, 2020.

[127] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.

Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining

approach”, 2019. arXiv: 1907.11692 [cs.CL].

[128] Y. Liu, Z.-Y. Dou, and P. Liu, “Refsum: Refactoring neural summarization”, arXiv

preprint arXiv:2104.07210, 2021.

[129] Z. Liu, X. Xia, M. Yan, and S. Li, “Automating just-in-time comment updating”,

in Proceedings of the 35th IEEE/ACM International Conference on Automated

Software Engineering, 2020, pp. 585–597.

[130] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi, “UCI source code data sets”,

2010. [Online]. Available: http://www.ics.uci.edu/$%5Csim$

lopes/datasets/.

[131] J. Mahmud, F. Faisal, R. I. Arnob, A. Anastasopoulos, and K. Moran, “Code to

comment translation: A comparative study on model effectiveness & errors”, in

Proceedings of the 1st Workshop on Natural Language Processing for Program-

ming (NLP4Prog 2021), Online: Association for Computational Linguistics, Aug.

2021, pp. 1–16. [Online]. Available: https://aclanthology.org/2021.

nlp4prog-1.1.

[132] D. Maier, “The complexity of some problems on subsequences and superse-

quences”, Journal of the ACM (JACM), vol. 25, no. 2, pp. 322–336, 1978.

[133] A. Martino, M. Iannelli, and C. Truong, “Knowledge injection to counter large

language model (llm) hallucination”, in The Semantic Web: ESWC 2023 Satellite

Events, C. Pesquita, H. Skaf-Molli, V. Efthymiou, S. Kirrane, A. Ngonga, D.

Collarana, R. Cerqueira, M. Alam, C. Trojahn, and S. Hertling, Eds., Cham:

Springer Nature Switzerland, 2023, pp. 182–185, ISBN: 978-3-031-43458-7.

157

https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/1907.11692
http://www.ics.uci.edu/$%5Csim$lopes/datasets/
http://www.ics.uci.edu/$%5Csim$lopes/datasets/
https://aclanthology.org/2021.nlp4prog-1.1
https://aclanthology.org/2021.nlp4prog-1.1

BIBLIOGRAPHY

[134] P. W. McBurney and C. McMillan, “Automatic documentation generation via

source code summarization of method context”, in Proceedings of the 22nd Inter-

national Conference on Program Comprehension, 2014, pp. 279–290.

[135] N. Megill and D. A. Wheeler, “Metamath: a computer language for mathematical

proofs”, Lulu. com, 2019.

[136] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space”, 2013. arXiv: 1301.3781 [cs.CL]. [Online].

Available: https://arxiv.org/abs/1301.3781.

[137] M. J. Min, Y. Ding, L. Buratti, S. Pujar, G. Kaiser, S. Jana, and B. Ray, “Be-

yond accuracy: Evaluating self-consistency of code large language models with

identitychain”, in The Twelfth International Conference on Learning Representa-

tions, 2024. [Online]. Available: https://openreview.net/forum?id=

caW7LdAALh.

[138] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-Shanker,

“Automatic generation of natural language summaries for java classes”, in 2013

21st International Conference on Program Comprehension (ICPC), 2013, pp. 23–

32.

[139] C. Morgan, K. Robinson, and P. Gardiner, “On the Refinement Calculus”, Tech-

llical Monograph, 1988, ISBN: 0-902928-52-X. [Online]. Available: https:

//web.comlab.ox.ac.uk/files/3391/PRG70.pdf.

[140] C. Morgan, “Programming from Specifications”, USA: Prentice-Hall, Inc., 1990,

ISBN: 0137262256.

[141] L. de Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer, “The lean

theorem prover (system description)”, in Automated Deduction-CADE-25: 25th

International Conference on Automated Deduction, Berlin, Germany, August 1-7,

2015, Proceedings 25, Springer, 2015, pp. 378–388.

[142] D. Movshovitz-Attias and W. Cohen, “Natural language models for predicting

programming comments”, in Proceedings of the 51st Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers), 2013, pp. 35–

40.

158

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://openreview.net/forum?id=caW7LdAALh
https://openreview.net/forum?id=caW7LdAALh
https://web.comlab.ox.ac.uk/files/3391/PRG70.pdf
https://web.comlab.ox.ac.uk/files/3391/PRG70.pdf

BIBLIOGRAPHY

[143] H. Mozannar, G. Bansal, A. Fourney, and E. Horvitz, “Reading between the lines:

Modeling user behavior and costs in ai-assisted programming”, arXiv preprint

arXiv:2210.14306, 2022.

[144] F. Mu, X. Chen, L. Shi, S. Wang, and Q. Wang, “Automatic comment generation

via multi-pass deliberation”, in Proceedings of the 37th IEEE/ACM International

Conference on Automated Software Engineering, 2022, pp. 1–12.

[145] N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-based prompt selection for code-

related few-shot learning”, in Proceedings of the 45th International Conference

on Software Engineering, ser. ICSE ’23, Melbourne, Victoria, Australia: IEEE

Press, 2023, pp. 2450–2462, ISBN: 9781665457019. [Online]. Available: https:

//doi.org/10.1109/ICSE48619.2023.00205.

[146] M. S. Nawaz, M. Malik, Y. Li, M. Sun, and M. I. U. Lali, “A survey on theorem

provers in formal methods”, 2019. arXiv: 1912.03028 [cs.SE].

[147] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan, “A study

of repetitiveness of code changes in software evolution”, in 2013 28th IEEE/ACM

International Conference on Automated Software Engineering (ASE), IEEE, 2013,

pp. 180–190.

[148] N. Nguyen and S. Nadi, “An empirical evaluation of github copilot’s code sugges-

tions”, in Proceedings of the 19th International Conference on Mining Software

Repositories, 2022, pp. 1–5.

[149] U. Norell, “Dependently typed programming in Agda”, in Proceedings of the 4th

international workshop on Types in language design and implementation, 2009,

pp. 1–2.

[150] M. Norrish, “C formalised in HOL”, University of Cambridge, Computer Labora-

tory, Tech. Rep., 1998.

[151] OpenAI, “Codex”, https://openai.com/blog/openai-codex, 2020.

[152] OpenAI, “Gpt3.5”, https://platform.openai.com/docs/models/

gpt-3-5, 2020.

[153] OpenAI, “OpenAI GPT-3 Model”, 2020. [Online]. Available: https://openai.

com/gpt-3/.

159

https://doi.org/10.1109/ICSE48619.2023.00205
https://doi.org/10.1109/ICSE48619.2023.00205
https://arxiv.org/abs/1912.03028
https://openai.com/blog/openai-codex
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://openai.com/gpt-3/
https://openai.com/gpt-3/

BIBLIOGRAPHY

[154] OpenAI, “Chatgpt”, https://openai.com/chatgpt, Accessed on March

29, 2023, 2021.

[155] OpenAI and co., “GPT-4 technical report”, 2023. arXiv: 2303.08774 [cs.CL].

[156] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,

S. Agarwal, K. Slama, A. Ray, et al., “Training language models to follow instruc-

tions with human feedback”, arXiv preprint arXiv:2203.02155, 2022.

[157] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal verification for fault-

tolerant architectures: Prolegomena to the design of PVS”, IEEE Transactions on

Software Engineering, vol. 21, no. 2, pp. 107–125, 1995.

[158] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:

Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[159] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for automatic

evaluation of machine translation”, in Proceedings of the 40th Annual Meeting of

the Association for Computational Linguistics, P. Isabelle, E. Charniak, and D. Lin,

Eds., Philadelphia, Pennsylvania, USA: Association for Computational Linguistics,

Jul. 2002, pp. 311–318. [Online]. Available: https://aclanthology.org/

P02-1040.

[160] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for automatic

evaluation of machine translation”, in Proceedings of the 40th annual meeting of

the Association for Computational Linguistics, 2002, pp. 311–318.

[161] M. R. Parvez, W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “Retrieval

augmented code generation and summarization”, CoRR, vol. abs/2108.11601,

2021. arXiv: 2108.11601. [Online]. Available: https://arxiv.org/

abs/2108.11601.

[162] L. C. Paulson, “Isabelle: A generic theorem prover”, Springer, 1994.

[163] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for word

representation”, in Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), A. Moschitti, B. Pang, and W. Daele-

mans, Eds., Doha, Qatar: Association for Computational Linguistics, Oct. 2014,

pp. 1532–1543. [Online]. Available: https://aclanthology.org/D14-

1162.

160

https://openai.com/chatgpt
https://arxiv.org/abs/2303.08774
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://arxiv.org/abs/2108.11601
https://arxiv.org/abs/2108.11601
https://arxiv.org/abs/2108.11601
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162

BIBLIOGRAPHY

[164] L. Phan, H. Tran, D. Le, H. Nguyen, J. Anibal, A. Peltekian, and Y. Ye, “Co-

text: Multi-task learning with code-text transformer”, 2021. [Online]. Available:

https://arxiv.org/abs/2105.08645.

[165] N. Polikarpova, I. Kuraj, and A. Solar-Lezama, “Program synthesis from polymor-

phic refinement types”, SIGPLAN Not., vol. 51, no. 6, pp. 522–538, Jun. 2016,

ISSN: 0362-1340. [Online]. Available: http://doi.acm.org/10.1145/

2980983.2908093.

[166] S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and I. Sutskever, “Formal

mathematics statement curriculum learning”, arXiv preprint arXiv:2202.01344,

2022.

[167] S. Polu and I. Sutskever, “Generative language modeling for automated theorem

proving”, arXiv preprint arXiv:2009.03393, 2020.

[168] E. M. Ponti, G. Glavaš, O. Majewska, Q. Liu, I. Vulić, and A. Korhonen, “Xcopa: A

multilingual dataset for causal commonsense reasoning”, arXiv preprint arXiv:2005.00333,

2020.

[169] M. Püschel, J. M. F. Moura, J. R. Johnson, D. A. Padua, M. M. Veloso, B. Singer,

J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and

N. Rizzolo, “SPIRAL: code generation for DSP transforms”, Proceedings of the

IEEE, vol. 93, no. 2, pp. 232–275, 2005. [Online]. Available: https://doi.

org/10.1109/JPROC.2004.840306.

[170] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,

P. J. Liu, et al., “Exploring the limits of transfer learning with a unified text-to-text

transformer.” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1–67, 2020.

[171] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W.

Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-

to-text transformer”, Journal of Machine Learning Research, vol. 21, no. 140,

pp. 1–67, 2020. [Online]. Available: http://jmlr.org/papers/v21/20-

074.html.

[172] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,

and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text

transformer”,, vol. 21, no. 1, 2020, ISSN: 1532-4435.

161

https://arxiv.org/abs/2105.08645
http://doi.acm.org/10.1145/2980983.2908093
http://doi.acm.org/10.1145/2980983.2908093
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1109/JPROC.2004.840306
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

BIBLIOGRAPHY

[173] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese

bert-networks”, in Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing, Association for Computational Linguistics, Nov.

2019. [Online]. Available: https://arxiv.org/abs/1908.10084.

[174] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E.

Dupont, F. J. Ruiz, J. S. Ellenberg, P. Wang, O. Fawzi, et al., “Mathematical

discoveries from program search with large language models”, Nature, pp. 1–3,

2023.

[175] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu,

T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton, M. Bhatt, C. C. Ferrer,

A. Grattafiori, W. Xiong, A. Défossez, J. Copet, F. Azhar, H. Touvron, L. Martin,

N. Usunier, T. Scialom, and G. Synnaeve, “Code llama: Open foundation models

for code”, 2023. arXiv: 2308.12950 [cs.CL].

[176] P. Rudnicki, “An overview of the Mizar project”, in Proceedings of the 1992

Workshop on Types for Proofs and Programs, 1992, pp. 311–330.

[177] T. Runge, I. Schaefer, L. Cleophas, T. Thüm, D. Kourie, and B. W. Watson, “Tool

support for correctness-by-construction”, in Fundamental Approaches to Software

Engineering, R. Hähnle and W. van der Aalst, Eds., Cham: Springer International

Publishing, 2019, pp. 25–42.

[178] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli, “Modern

code review: A case study at google”, in Proceedings of the 40th International

Conference on Software Engineering: Software Engineering in Practice, 2018,

pp. 181–190.

[179] J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff, “Masked language model

scoring”, arXiv preprint arXiv:1910.14659, 2019.

[180] B. D. Sall, F. Peschanski, and E. Chailloux, “A mechanized theory of program

refinement”, in Formal Methods and Software Engineering: 21st International

Conference on Formal Engineering Methods, ICFEM 2019, Shenzhen, China,

November 5–9, 2019, Proceedings, Shenzhen, China: Springer-Verlag, 2019,

pp. 305–321, ISBN: 978-3-030-32408-7. [Online]. Available: https://doi.

org/10.1007/978-3-030-32409-4_19.

162

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2308.12950
https://doi.org/10.1007/978-3-030-32409-4_19
https://doi.org/10.1007/978-3-030-32409-4_19

BIBLIOGRAPHY

[181] T. Schick and H. Schütze, “Few-shot text generation with natural language instruc-

tions”, in Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing, 2021, pp. 390–402.

[182] T. Schick, S. Udupa, and H. Schütze, “Self-diagnosis and self-debiasing: A pro-

posal for reducing corpus-based bias in nlp”, Transactions of the Association for

Computational Linguistics, vol. 9, pp. 1408–1424, 2021.

[183] S. Schulz, “E - a brainiac theorem prover”, AI Commun., vol. 15, no. 2,3, pp. 111–

126, 2002, ISSN: 0921-7126.

[184] R. Sharma, F. Chen, and F. Fard, “Lamner: Code comment generation using

character language model and named entity recognition”, 2022. arXiv: 2204.

09654 [cs.CL].

[185] H. Shiina, A. Takahashi, R. Ito, and N. Kobayashi, “Comment generation system

for program procedure learning”, in 2018 7th International Congress on Advanced

Applied Informatics (IIAI-AAI), IEEE, 2018, pp. 38–42.

[186] J. Shin and J. Nam, “A survey of automatic code generation from natural lan-

guage”, Journal of Information Processing Systems, vol. 17, no. 3, pp. 537–555,

2021.

[187] A. Solar-Lezama, C. G. Jones, and R. Bodík, “Sketching concurrent data struc-

tures”, in Proceedings of the ACM SIGPLAN 2008 Conference on Programming

Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, 2008,

pp. 136–148. [Online]. Available: http://doi.acm.org/10.1145/

1375581.1375599.

[188] S. Srivastava, S. Gulwani, and J. S. Foster, “From program verification to program

synthesis”, in Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2010, Madrid, Spain, January

17-23, 2010, 2010, pp. 313–326. [Online]. Available: http://doi.acm.org/

10.1145/1706299.1706337.

[189] J. Su, J. Cao, W. Liu, and Y. Ou, “Whitening sentence representations for better

semantics and faster retrieval”, arXiv preprint arXiv:2103.15316, 2021.

163

https://arxiv.org/abs/2204.09654
https://arxiv.org/abs/2204.09654
http://doi.acm.org/10.1145/1375581.1375599
http://doi.acm.org/10.1145/1375581.1375599
http://doi.acm.org/10.1145/1706299.1706337
http://doi.acm.org/10.1145/1706299.1706337

BIBLIOGRAPHY

[190] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “Pat: Towards flexible verification under

fairness”, in Computer Aided Verification, A. Bouajjani and O. Maler, Eds., Berlin,

Heidelberg: Springer Berlin Heidelberg, 2009, pp. 709–714, ISBN: 978-3-642-

02658-4.

[191] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt, “Test-time training

with self-supervision for generalization under distribution shifts”, in Proceedings

of the 37th International Conference on Machine Learning, H. D. III and A. Singh,

Eds., ser. Proceedings of Machine Learning Research, vol. 119, PMLR, 2020,

pp. 9229–9248. [Online]. Available: https://proceedings.mlr.press/

v119/sun20b.html.

[192] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang, “Treegen: A tree-

based transformer architecture for code generation”, in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 34, 2020, pp. 8984–8991.

[193] W. Swierstra and J. Alpuim, “From proposition to program: Embedding the

refinement calculus in Coq”, in Functional and Logic Programming: 13th Interna-

tional Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings 13,

Springer, 2016, pp. 29–44.

[194] S. Team, “Spring framework”, 2022. [Online]. Available: https://spring.

io/projects/spring-framework.

[195] E. Ufuktepe, T. Tuglular, and K. Palaniappan, “Tracking code bug fix ripple effects

based on change patterns using markov chain models”, IEEE Transactions on

Reliability, vol. 71, no. 2, pp. 1141–1156, 2022.

[196] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experience:

Evaluating the usability of code generation tools powered by large language

models”, in Chi conference on human factors in computing systems extended

abstracts, 2022, pp. 1–7.

[197] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot:

A java bytecode optimization framework”, in CASCON First Decade High Impact

Papers, 2010, pp. 214–224.

164

https://proceedings.mlr.press/v119/sun20b.html
https://proceedings.mlr.press/v119/sun20b.html
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-framework

BIBLIOGRAPHY

[198] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin, “Attention is all you need”, Advances in neural information

processing systems, vol. 30, 2017.

[199] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent: Fully test-time

adaptation by entropy minimization”, in International Conference on Learning

Representations, 2021. [Online]. Available: https://openreview.net/

forum?id=uXl3bZLkr3c.

[200] H. Wang, Y. Yuan, Z. Liu, J. Shen, Y. Yin, J. Xiong, E. Xie, H. Shi, Y. Li, L. Li, et

al., “Dt-solver: Automated theorem proving with dynamic-tree sampling guided

by proof-level value function”, in Proceedings of the 61st Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), 2023,

pp. 12 632–12 646.

[201] Q. Wang, C. Kaliszyk, and J. Urban, “First experiments with neural translation

of informal to formal mathematics”, in Intelligent Computer Mathematics: 11th

International Conference, CICM 2018, Hagenberg, Austria, August 13-17, 2018,

Proceedings 11, Springer, 2018, pp. 255–270.

[202] Y. Wang, E. Shi, L. Du, X. Yang, Y. Hu, S. Han, H. Zhang, and D. Zhang,

“Cocosum: Contextual code summarization with multi-relational graph neural

network”, 2021. [Online]. Available: https://arxiv.org/abs/2107.

01933.

[203] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C. Hoi, “Codet5+:

Open code large language models for code understanding and generation”, arXiv

preprint arXiv:2305.07922, 2023.

[204] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware unified pre-

trained encoder-decoder models for code understanding and generation”, arXiv

preprint arXiv:2109.00859, 2021.

[205] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, “Code generation as a dual task of code

summarization”, NeurIPS, 2019.

[206] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine: Exemplar-based

neural comment generation”, in 2020 35th IEEE/ACM International Conference

on Automated Software Engineering (ASE), IEEE, 2020, pp. 349–360.

165

https://openreview.net/forum?id=uXl3bZLkr3c
https://openreview.net/forum?id=uXl3bZLkr3c
https://arxiv.org/abs/2107.01933
https://arxiv.org/abs/2107.01933

BIBLIOGRAPHY

[207] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou,

et al., “Chain-of-thought prompting elicits reasoning in large language models”,

Advances in Neural Information Processing Systems, vol. 35, pp. 24 824–24 837,

2022.

[208] E. Wong, T. Liu, and L. Tan, “Clocom: Mining existing source code for automatic

comment generation”, in 2015 IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), IEEE, 2015, pp. 380–389.

[209] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and answer

sites for automatic comment generation”, in 2013 28th IEEE/ACM International

Conference on Automated Software Engineering (ASE), IEEE, 2013, pp. 562–567.

[210] Y. Wu, A. Q. Jiang, W. Li, M. Rabe, C. Staats, M. Jamnik, and C. Szegedy,

“Autoformalization with large language models”, Advances in Neural Information

Processing Systems, vol. 35, pp. 32 353–32 368, 2022.

[211] H. Xin, H. Wang, C. Zheng, L. Li, Z. Liu, Q. Cao, Y. Huang, J. Xiong, H. Shi,

E. Xie, et al., “LEGO-prover: Neural theorem proving with growing libraries”,

arXiv preprint arXiv:2310.00656, 2023.

[212] Z. Xu, S. Jain, and M. Kankanhalli, “Hallucination is inevitable: An innate limita-

tion of large language models”, 2024. arXiv: 2401.11817 [cs.CL]. [Online].

Available: https://arxiv.org/abs/2401.11817.

[213] S. Yan, H. Yu, Y. Chen, B. Shen, and L. Jiang, “Are the code snippets what we are

searching for? a benchmark and an empirical study on code search with natural-

language queries”, in 2020 IEEE 27th International Conference on Software

Analysis, Evolution and Reengineering (SANER), IEEE, 2020, pp. 344–354.

[214] C. Yang, Y. Liu, and C. Yin, “Recent advances in intelligent source code generation:

A survey on natural language based studies”, Entropy, vol. 23, no. 9, p. 1174,

2021.

[215] G. Yang, X. Chen, J. Cao, S. Xu, Z. Cui, C. Yu, and K. Liu, “Comformer: Code

comment generation via transformer and fusion method-based hybrid code rep-

resentation”, 2021. [Online]. Available: https://arxiv.org/abs/2107.

03644.

166

https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2107.03644
https://arxiv.org/abs/2107.03644

BIBLIOGRAPHY

[216] G. Yang, K. Liu, X. Chen, Y. Zhou, C. Yu, and H. Lin, “Ccgir: Information retrieval-

based code comment generation method for smart contracts”, Knowledge-Based

Systems, vol. 237, p. 107 858, 2022.

[217] K. Yang, A. M. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. Prenger,

and A. Anandkumar, “LeanDojo: Theorem proving with retrieval-augmented

language models”, arXiv preprint arXiv:2306.15626, 2023.

[218] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan, “Tree of

thoughts: Deliberate problem solving with large language models”, English (US),

Advances in Neural Information Processing Systems, vol. 36, 2023, Publisher

Copyright: © 2023 Neural information processing systems foundation. All rights

reserved.; 37th Conference on Neural Information Processing Systems, NeurIPS

2023 ; Conference date: 10-12-2023 Through 16-12-2023, ISSN: 1049-5258.

[219] W. Ye, R. Xie, J. Zhang, T. Hu, X. Wang, and S. Zhang, “Leveraging code

generation to improve code retrieval and summarization via dual learning”, in

Proceedings of The Web Conference 2020, 2020, pp. 2309–2319.

[220] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features

in deep neural networks?” In Proceedings of the 27th International Conference

on Neural Information Processing Systems - Volume 2, ser. NIPS’14, Montreal,

Canada: MIT Press, 2014, pp. 3320–3328.

[221] C. Yu, G. Yang, X. Chen, K. Liu, and Y. Zhou, “Bashexplainer: Retrieval-augmented

bash code comment generation based on fine-tuned codebert”, arXiv preprint

arXiv:2206.13325, 2022.

[222] H. Yuchao, W. Moshi, W. Song, W. Junjie, and W. Qing, “Yet another combination

of ir- and neural-based comment generation”, 2021. [Online]. Available: https:

//arxiv.org/abs/2107.12938.

[223] B. Zhang, B. Haddow, and A. Birch, “Prompting large language model for machine

translation: A case study”, arXiv preprint arXiv:2301.07069, 2023.

[224] C. Zhang, Q. Zhou, M. Qiao, K. Tang, L. Xu, and F. Liu, “Re_trans: Combined

retrieval and transformer model for source code summarization”, Entropy, vol. 24,

no. 10, p. 1372, 2022.

167

https://arxiv.org/abs/2107.12938
https://arxiv.org/abs/2107.12938

BIBLIOGRAPHY

[225] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based neural source

code summarization”, in 2020 IEEE/ACM 42nd International Conference on

Software Engineering (ICSE), IEEE, 2020, pp. 1385–1397.

[226] J. Zhang, S. Panthaplackel, P. Nie, J. J. Li, and M. Gligoric, “CoditT5: Pretraining

for source code and natural language editing”, in International Conference on

Automated Software Engineering, 2022.

[227] J. Zhang, S. Panthaplackel, P. Nie, R. J. Mooney, J. J. Li, and M. Gligoric, “Learn-

ing to generate code comments from class hierarchies”, 2021. [Online]. Available:

https://arxiv.org/abs/2103.13426.

[228] R. Zhang, A. Saran, B. Liu, Y. Zhu, S. Guo, S. Niekum, D. Ballard, and M. Hayhoe,

“Human gaze assisted artificial intelligence: A review”, in IJCAI: Proceedings of

the Conference, NIH Public Access, vol. 2020, 2020, p. 4951.

[229] S. Zhang, L. Dong, X. Li, S. Zhang, X. Sun, S. Wang, J. Li, R. Hu, T. Zhang,

F. Wu, and G. Wang, “Instruction tuning for large language models: A survey”,

2024. arXiv: 2308.10792 [cs.CL]. [Online]. Available: https://arxiv.

org/abs/2308.10792.

[230] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: A new data clustering algo-

rithm and its applications”, Data mining and knowledge discovery, vol. 1, pp. 141–

182, 1997.

[231] Y. Zhang, Y. Cai, X. Zuo, X. Luan, K. Wang, Z. Hou, Y. Zhang, Z. Wei, M. Sun,

J. Sun, J. Sun, and J. S. Dong, “The fusion of large language models and formal

methods for trustworthy ai agents: A roadmap”, 2024. arXiv: 2412.06512

[cs.AI]. [Online]. Available: https://arxiv.org/abs/2412.06512.

[232] Y. Zhang, J. Yang, Y. Yuan, and A. C.-C. Yao, “Cumulative reasoning with large

language models”, arXiv preprint arXiv:2308.04371, 2023.

[233] Y. Zhang, Y. Bajpai, P. Gupta, A. Ketkar, M. Allamanis, T. Barik, S. Gulwani, A.

Radhakrishna, M. Raza, G. Soares, and A. Tiwari, “Overwatch: Learning patterns

in code edit sequences”, Proc. ACM Program. Lang., vol. 6, no. OOPSLA2, 2022.

[Online]. Available: https://doi.org/10.1145/3563302.

168

https://arxiv.org/abs/2103.13426
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2412.06512
https://arxiv.org/abs/2412.06512
https://arxiv.org/abs/2412.06512
https://doi.org/10.1145/3563302

BIBLIOGRAPHY

[234] R. Zhao, X. Li, S. Joty, C. Qin, and L. Bing, “Verify-and-edit: A knowledge-

enhanced chain-of-thought framework”, in Proceedings of the 61st Annual Meet-

ing of the Association for Computational Linguistics (Volume 1: Long Papers),

A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds., Toronto, Canada: Association

for Computational Linguistics, Jul. 2023, pp. 5823–5840. [Online]. Available:

https://aclanthology.org/2023.acl-long.320.

[235] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang,

Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang,

Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen, “A survey of large language models”,

2023. arXiv: 2303.18223 [cs.CL].

[236] X. Zhao, W. Li, and L. Kong, “Decomposing the Enigma: Subgoal-based demon-

stration learning for formal theorem proving”, arXiv preprint arXiv:2305.16366,

2023.

[237] Y. Zhou, X. Zhang, J. Shen, T. Han, T. Chen, and H. Gall, “Adversarial robust-

ness of deep code comment generation”, 2021. [Online]. Available: https:

//arxiv.org/abs/2108.00213.

[238] Q. Zhu, Z. Sun, Y.-a. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang, “A syntax-

guided edit decoder for neural program repair”, in Proceedings of the 29th ACM

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering, ser. ESEC/FSE 2021, Athens, Greece:

Association for Computing Machinery, 2021, pp. 341–353, ISBN: 9781450385626.

[Online]. Available: https://doi.org/10.1145/3468264.3468544.

169

https://aclanthology.org/2023.acl-long.320
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2108.00213
https://arxiv.org/abs/2108.00213
https://doi.org/10.1145/3468264.3468544

	Acknowledgments
	Contents
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation and Goals
	Summary of Contributions
	Thesis Outline and Overview
	Publications from the Thesis

	Background
	Trustworthy Program Generation
	Program Refinement
	Program Verification
	Program Documentation
	Program Evolution
	Program Adaptation

	Program Refinement: From Specification to Program
	Introduction
	Motivating Example
	Guide the LLM
	Failure Feedback
	Learning Strategies for Extending the Refinement Calculus

	The Language
	The Specification Language
	The Program Language

	The Refinement Calculus
	Basics
	Core Refinement Laws
	Law Learning Strategy

	Interaction with LLM and ATPs
	Overview
	Complex Formal Specification
	Interaction with LLMs
	Interaction with ATPs

	Evaluation
	Research Questions
	Baselines
	Benchmarks
	Implementation
	Experiment Results

	Case Study
	Square Root Algorithm
	Sorting Algorithm
	Prime Factorization Algorithm

	Threats to Validity

	Program Documentation
	Introduction
	Overview
	Motivating Example
	Our Solution

	Approach
	Embedding-based Representation
	Code Knowledge Graph
	Context Sampling
	Context Evaluation
	Context Fusion

	Experiment
	Experiment Setup
	Experiment Results

	Program Evolution
	Introduction
	Overview
	Approach
	Subsequent Edit Analysis
	Prior Edit Analysis
	Edit Generation
	Model Training

	Tool Design
	Experiment
	Research Questions
	Benchmark Construction
	Experiment Setup
	Experiment Results

	User Study
	Threats to Validity

	Program Adaptation
	Introduction
	Overview
	Problem Formulation
	Approach
	Influence Construction
	Estimated Influence
	Training Contribution Construction
	On-the-fly Model Adaptation

	Evaluation
	Experiment Setup
	Datasets
	Experiment Design
	Experiment Results

	Case Study
	Abstract versus Detailed Explanation
	Explicit and Implicit Mistakes

	Threats to Validity

	Conclusion and Future Work
	Summary of the Thesis
	On-going and Future Works
	Tool Development
	Program Generation Techniques
	LLM Agents

	Bibliography

